Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnmbfm Structured version   Visualization version   Unicode version

Theorem cnmbfm 30325
Description: A continuous function is measurable with respect to the Borel Algebra of its domain and range. (Contributed by Thierry Arnoux, 3-Jun-2017.)
Hypotheses
Ref Expression
cnmbfm.1  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
cnmbfm.2  |-  ( ph  ->  S  =  (sigaGen `  J
) )
cnmbfm.3  |-  ( ph  ->  T  =  (sigaGen `  K
) )
Assertion
Ref Expression
cnmbfm  |-  ( ph  ->  F  e.  ( SMblFnM
T ) )

Proof of Theorem cnmbfm
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 cnmbfm.1 . . . 4  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
2 eqid 2622 . . . . 5  |-  U. J  =  U. J
3 eqid 2622 . . . . 5  |-  U. K  =  U. K
42, 3cnf 21050 . . . 4  |-  ( F  e.  ( J  Cn  K )  ->  F : U. J --> U. K
)
51, 4syl 17 . . 3  |-  ( ph  ->  F : U. J --> U. K )
6 cnmbfm.2 . . . . . 6  |-  ( ph  ->  S  =  (sigaGen `  J
) )
76unieqd 4446 . . . . 5  |-  ( ph  ->  U. S  =  U. (sigaGen `  J ) )
8 cntop1 21044 . . . . . 6  |-  ( F  e.  ( J  Cn  K )  ->  J  e.  Top )
9 unisg 30206 . . . . . 6  |-  ( J  e.  Top  ->  U. (sigaGen `  J )  =  U. J )
101, 8, 93syl 18 . . . . 5  |-  ( ph  ->  U. (sigaGen `  J
)  =  U. J
)
117, 10eqtrd 2656 . . . 4  |-  ( ph  ->  U. S  =  U. J )
12 cnmbfm.3 . . . . . 6  |-  ( ph  ->  T  =  (sigaGen `  K
) )
1312unieqd 4446 . . . . 5  |-  ( ph  ->  U. T  =  U. (sigaGen `  K ) )
14 cntop2 21045 . . . . . 6  |-  ( F  e.  ( J  Cn  K )  ->  K  e.  Top )
15 unisg 30206 . . . . . 6  |-  ( K  e.  Top  ->  U. (sigaGen `  K )  =  U. K )
161, 14, 153syl 18 . . . . 5  |-  ( ph  ->  U. (sigaGen `  K
)  =  U. K
)
1713, 16eqtrd 2656 . . . 4  |-  ( ph  ->  U. T  =  U. K )
1811, 17feq23d 6040 . . 3  |-  ( ph  ->  ( F : U. S
--> U. T  <->  F : U. J --> U. K ) )
195, 18mpbird 247 . 2  |-  ( ph  ->  F : U. S --> U. T )
20 sssigagen 30208 . . . . . . 7  |-  ( J  e.  Top  ->  J  C_  (sigaGen `  J )
)
211, 8, 203syl 18 . . . . . 6  |-  ( ph  ->  J  C_  (sigaGen `  J
) )
2221, 6sseqtr4d 3642 . . . . 5  |-  ( ph  ->  J  C_  S )
2322adantr 481 . . . 4  |-  ( (
ph  /\  a  e.  K )  ->  J  C_  S )
24 cnima 21069 . . . . 5  |-  ( ( F  e.  ( J  Cn  K )  /\  a  e.  K )  ->  ( `' F "
a )  e.  J
)
251, 24sylan 488 . . . 4  |-  ( (
ph  /\  a  e.  K )  ->  ( `' F " a )  e.  J )
2623, 25sseldd 3604 . . 3  |-  ( (
ph  /\  a  e.  K )  ->  ( `' F " a )  e.  S )
2726ralrimiva 2966 . 2  |-  ( ph  ->  A. a  e.  K  ( `' F " a )  e.  S )
28 elex 3212 . . . 4  |-  ( K  e.  Top  ->  K  e.  _V )
291, 14, 283syl 18 . . 3  |-  ( ph  ->  K  e.  _V )
30 sigagensiga 30204 . . . . . 6  |-  ( J  e.  Top  ->  (sigaGen `  J )  e.  (sigAlgebra ` 
U. J ) )
311, 8, 303syl 18 . . . . 5  |-  ( ph  ->  (sigaGen `  J )  e.  (sigAlgebra `  U. J ) )
326, 31eqeltrd 2701 . . . 4  |-  ( ph  ->  S  e.  (sigAlgebra `  U. J ) )
33 elrnsiga 30189 . . . 4  |-  ( S  e.  (sigAlgebra `  U. J )  ->  S  e.  U. ran sigAlgebra )
3432, 33syl 17 . . 3  |-  ( ph  ->  S  e.  U. ran sigAlgebra )
3529, 34, 12imambfm 30324 . 2  |-  ( ph  ->  ( F  e.  ( SMblFnM T )  <->  ( F : U. S --> U. T  /\  A. a  e.  K  ( `' F " a )  e.  S ) ) )
3619, 27, 35mpbir2and 957 1  |-  ( ph  ->  F  e.  ( SMblFnM
T ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    C_ wss 3574   U.cuni 4436   `'ccnv 5113   ran crn 5115   "cima 5117   -->wf 5884   ` cfv 5888  (class class class)co 6650   Topctop 20698    Cn ccn 21028  sigAlgebracsiga 30170  sigaGencsigagen 30201  MblFnMcmbfm 30312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-ac2 9285
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-oi 8415  df-card 8765  df-acn 8768  df-ac 8939  df-cda 8990  df-top 20699  df-topon 20716  df-cn 21031  df-siga 30171  df-sigagen 30202  df-mbfm 30313
This theorem is referenced by:  sxbrsiga  30352  rrvadd  30514  rrvmulc  30515
  Copyright terms: Public domain W3C validator