Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sitmval Structured version   Visualization version   Unicode version

Theorem sitmval 30411
Description: Value of the simple function integral metric for a given space  W and measure  M. (Contributed by Thierry Arnoux, 30-Jan-2018.)
Hypotheses
Ref Expression
sitmval.d  |-  D  =  ( dist `  W
)
sitmval.1  |-  ( ph  ->  W  e.  V )
sitmval.2  |-  ( ph  ->  M  e.  U. ran measures )
Assertion
Ref Expression
sitmval  |-  ( ph  ->  ( Wsitm M )  =  ( f  e. 
dom  ( Wsitg M
) ,  g  e. 
dom  ( Wsitg M
)  |->  ( ( (
RR*ss  ( 0 [,] +oo ) )sitg M ) `
 ( f  oF D g ) ) ) )
Distinct variable groups:    f, g, M    f, W, g
Allowed substitution hints:    ph( f, g)    D( f, g)    V( f, g)

Proof of Theorem sitmval
Dummy variables  w  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sitmval.1 . . 3  |-  ( ph  ->  W  e.  V )
2 elex 3212 . . 3  |-  ( W  e.  V  ->  W  e.  _V )
31, 2syl 17 . 2  |-  ( ph  ->  W  e.  _V )
4 sitmval.2 . 2  |-  ( ph  ->  M  e.  U. ran measures )
5 oveq1 6657 . . . . 5  |-  ( w  =  W  ->  (
wsitg m )  =  ( Wsitg m ) )
65dmeqd 5326 . . . 4  |-  ( w  =  W  ->  dom  ( wsitg m )  =  dom  ( Wsitg m
) )
7 fveq2 6191 . . . . . . 7  |-  ( w  =  W  ->  ( dist `  w )  =  ( dist `  W
) )
8 ofeq 6899 . . . . . . 7  |-  ( (
dist `  w )  =  ( dist `  W
)  ->  oF
( dist `  w )  =  oF ( dist `  W ) )
97, 8syl 17 . . . . . 6  |-  ( w  =  W  ->  oF ( dist `  w
)  =  oF ( dist `  W
) )
109oveqd 6667 . . . . 5  |-  ( w  =  W  ->  (
f  oF (
dist `  w )
g )  =  ( f  oF (
dist `  W )
g ) )
1110fveq2d 6195 . . . 4  |-  ( w  =  W  ->  (
( ( RR*ss  (
0 [,] +oo )
)sitg m ) `  ( f  oF ( dist `  w
) g ) )  =  ( ( (
RR*ss  ( 0 [,] +oo ) )sitg m ) `
 ( f  oF ( dist `  W
) g ) ) )
126, 6, 11mpt2eq123dv 6717 . . 3  |-  ( w  =  W  ->  (
f  e.  dom  (
wsitg m ) ,  g  e.  dom  (
wsitg m )  |->  ( ( ( RR*ss  (
0 [,] +oo )
)sitg m ) `  ( f  oF ( dist `  w
) g ) ) )  =  ( f  e.  dom  ( Wsitg m ) ,  g  e.  dom  ( Wsitg m )  |->  ( ( ( RR*ss  ( 0 [,] +oo ) )sitg m ) `  (
f  oF (
dist `  W )
g ) ) ) )
13 oveq2 6658 . . . . 5  |-  ( m  =  M  ->  ( Wsitg m )  =  ( Wsitg M ) )
1413dmeqd 5326 . . . 4  |-  ( m  =  M  ->  dom  ( Wsitg m )  =  dom  ( Wsitg M
) )
15 oveq2 6658 . . . . 5  |-  ( m  =  M  ->  (
( RR*ss  ( 0 [,] +oo ) )sitg m )  =  ( ( RR*ss  ( 0 [,] +oo ) )sitg M ) )
16 sitmval.d . . . . . . . 8  |-  D  =  ( dist `  W
)
1716eqcomi 2631 . . . . . . 7  |-  ( dist `  W )  =  D
18 ofeq 6899 . . . . . . 7  |-  ( (
dist `  W )  =  D  ->  oF ( dist `  W
)  =  oF D )
1917, 18mp1i 13 . . . . . 6  |-  ( m  =  M  ->  oF ( dist `  W
)  =  oF D )
2019oveqd 6667 . . . . 5  |-  ( m  =  M  ->  (
f  oF (
dist `  W )
g )  =  ( f  oF D g ) )
2115, 20fveq12d 6197 . . . 4  |-  ( m  =  M  ->  (
( ( RR*ss  (
0 [,] +oo )
)sitg m ) `  ( f  oF ( dist `  W
) g ) )  =  ( ( (
RR*ss  ( 0 [,] +oo ) )sitg M ) `
 ( f  oF D g ) ) )
2214, 14, 21mpt2eq123dv 6717 . . 3  |-  ( m  =  M  ->  (
f  e.  dom  ( Wsitg m ) ,  g  e.  dom  ( Wsitg m )  |->  ( ( ( RR*ss  ( 0 [,] +oo ) )sitg m ) `  (
f  oF (
dist `  W )
g ) ) )  =  ( f  e. 
dom  ( Wsitg M
) ,  g  e. 
dom  ( Wsitg M
)  |->  ( ( (
RR*ss  ( 0 [,] +oo ) )sitg M ) `
 ( f  oF D g ) ) ) )
23 df-sitm 30393 . . 3  |- sitm  =  ( w  e.  _V ,  m  e.  U. ran measures  |->  ( f  e.  dom  ( wsitg m ) ,  g  e.  dom  ( wsitg m )  |->  ( ( ( RR*ss  ( 0 [,] +oo ) )sitg m ) `  (
f  oF (
dist `  w )
g ) ) ) )
24 ovex 6678 . . . . 5  |-  ( Wsitg M )  e.  _V
2524dmex 7099 . . . 4  |-  dom  ( Wsitg M )  e.  _V
2625, 25mpt2ex 7247 . . 3  |-  ( f  e.  dom  ( Wsitg M ) ,  g  e.  dom  ( Wsitg M )  |->  ( ( ( RR*ss  ( 0 [,] +oo ) )sitg M ) `  (
f  oF D g ) ) )  e.  _V
2712, 22, 23, 26ovmpt2 6796 . 2  |-  ( ( W  e.  _V  /\  M  e.  U. ran measures )  -> 
( Wsitm M )  =  ( f  e. 
dom  ( Wsitg M
) ,  g  e. 
dom  ( Wsitg M
)  |->  ( ( (
RR*ss  ( 0 [,] +oo ) )sitg M ) `
 ( f  oF D g ) ) ) )
283, 4, 27syl2anc 693 1  |-  ( ph  ->  ( Wsitm M )  =  ( f  e. 
dom  ( Wsitg M
) ,  g  e. 
dom  ( Wsitg M
)  |->  ( ( (
RR*ss  ( 0 [,] +oo ) )sitg M ) `
 ( f  oF D g ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   _Vcvv 3200   U.cuni 4436   dom cdm 5114   ran crn 5115   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652    oFcof 6895   0cc0 9936   +oocpnf 10071   [,]cicc 12178   ↾s cress 15858   distcds 15950   RR*scxrs 16160  measurescmeas 30258  sitmcsitm 30390  sitgcsitg 30391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-1st 7168  df-2nd 7169  df-sitm 30393
This theorem is referenced by:  sitmfval  30412  sitmf  30414
  Copyright terms: Public domain W3C validator