Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sitgaddlemb Structured version   Visualization version   Unicode version

Theorem sitgaddlemb 30410
Description: Lemma for * sitgadd . (Contributed by Thierry Arnoux, 10-Mar-2019.)
Hypotheses
Ref Expression
sitgval.b  |-  B  =  ( Base `  W
)
sitgval.j  |-  J  =  ( TopOpen `  W )
sitgval.s  |-  S  =  (sigaGen `  J )
sitgval.0  |-  .0.  =  ( 0g `  W )
sitgval.x  |-  .x.  =  ( .s `  W )
sitgval.h  |-  H  =  (RRHom `  (Scalar `  W
) )
sitgval.1  |-  ( ph  ->  W  e.  V )
sitgval.2  |-  ( ph  ->  M  e.  U. ran measures )
sitgadd.1  |-  ( ph  ->  W  e.  TopSp )
sitgadd.2  |-  ( ph  ->  ( Wv  ( H "
( 0 [,) +oo ) ) )  e. SLMod
)
sitgadd.3  |-  ( ph  ->  J  e.  Fre )
sitgadd.4  |-  ( ph  ->  F  e.  dom  ( Wsitg M ) )
sitgadd.5  |-  ( ph  ->  G  e.  dom  ( Wsitg M ) )
sitgadd.6  |-  ( ph  ->  (Scalar `  W )  e. ℝExt  )
sitgadd.7  |-  .+  =  ( +g  `  W )
Assertion
Ref Expression
sitgaddlemb  |-  ( (
ph  /\  p  e.  ( ( ran  F  X.  ran  G )  \  { <.  .0.  ,  .0.  >. } ) )  -> 
( ( H `  ( M `  ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) ) ) )  .x.  ( 2nd `  p ) )  e.  B )

Proof of Theorem sitgaddlemb
StepHypRef Expression
1 sitgadd.2 . . 3  |-  ( ph  ->  ( Wv  ( H "
( 0 [,) +oo ) ) )  e. SLMod
)
21adantr 481 . 2  |-  ( (
ph  /\  p  e.  ( ( ran  F  X.  ran  G )  \  { <.  .0.  ,  .0.  >. } ) )  -> 
( Wv  ( H "
( 0 [,) +oo ) ) )  e. SLMod
)
3 simpl 473 . . . . 5  |-  ( (
ph  /\  p  e.  ( ( ran  F  X.  ran  G )  \  { <.  .0.  ,  .0.  >. } ) )  ->  ph )
4 sitgadd.6 . . . . . . . 8  |-  ( ph  ->  (Scalar `  W )  e. ℝExt  )
5 eqid 2622 . . . . . . . . 9  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
65rrhfe 30056 . . . . . . . 8  |-  ( (Scalar `  W )  e. ℝExt  ->  (RRHom `  (Scalar `  W )
) : RR --> ( Base `  (Scalar `  W )
) )
74, 6syl 17 . . . . . . 7  |-  ( ph  ->  (RRHom `  (Scalar `  W
) ) : RR --> ( Base `  (Scalar `  W
) ) )
8 sitgval.h . . . . . . . 8  |-  H  =  (RRHom `  (Scalar `  W
) )
98feq1i 6036 . . . . . . 7  |-  ( H : RR --> ( Base `  (Scalar `  W )
)  <->  (RRHom `  (Scalar `  W
) ) : RR --> ( Base `  (Scalar `  W
) ) )
107, 9sylibr 224 . . . . . 6  |-  ( ph  ->  H : RR --> ( Base `  (Scalar `  W )
) )
11 ffn 6045 . . . . . 6  |-  ( H : RR --> ( Base `  (Scalar `  W )
)  ->  H  Fn  RR )
1210, 11syl 17 . . . . 5  |-  ( ph  ->  H  Fn  RR )
133, 12syl 17 . . . 4  |-  ( (
ph  /\  p  e.  ( ( ran  F  X.  ran  G )  \  { <.  .0.  ,  .0.  >. } ) )  ->  H  Fn  RR )
14 rge0ssre 12280 . . . . 5  |-  ( 0 [,) +oo )  C_  RR
1514a1i 11 . . . 4  |-  ( (
ph  /\  p  e.  ( ( ran  F  X.  ran  G )  \  { <.  .0.  ,  .0.  >. } ) )  -> 
( 0 [,) +oo )  C_  RR )
16 simpr 477 . . . . . . 7  |-  ( (
ph  /\  p  e.  ( ( ran  F  X.  ran  G )  \  { <.  .0.  ,  .0.  >. } ) )  ->  p  e.  ( ( ran  F  X.  ran  G
)  \  { <.  .0.  ,  .0.  >. } ) )
1716eldifad 3586 . . . . . 6  |-  ( (
ph  /\  p  e.  ( ( ran  F  X.  ran  G )  \  { <.  .0.  ,  .0.  >. } ) )  ->  p  e.  ( ran  F  X.  ran  G ) )
18 xp1st 7198 . . . . . 6  |-  ( p  e.  ( ran  F  X.  ran  G )  -> 
( 1st `  p
)  e.  ran  F
)
1917, 18syl 17 . . . . 5  |-  ( (
ph  /\  p  e.  ( ( ran  F  X.  ran  G )  \  { <.  .0.  ,  .0.  >. } ) )  -> 
( 1st `  p
)  e.  ran  F
)
20 xp2nd 7199 . . . . . 6  |-  ( p  e.  ( ran  F  X.  ran  G )  -> 
( 2nd `  p
)  e.  ran  G
)
2117, 20syl 17 . . . . 5  |-  ( (
ph  /\  p  e.  ( ( ran  F  X.  ran  G )  \  { <.  .0.  ,  .0.  >. } ) )  -> 
( 2nd `  p
)  e.  ran  G
)
2216eldifbd 3587 . . . . . . . 8  |-  ( (
ph  /\  p  e.  ( ( ran  F  X.  ran  G )  \  { <.  .0.  ,  .0.  >. } ) )  ->  -.  p  e.  { <.  .0. 
,  .0.  >. } )
23 velsn 4193 . . . . . . . . 9  |-  ( p  e.  { <.  .0.  ,  .0.  >. }  <->  p  =  <.  .0.  ,  .0.  >. )
2423notbii 310 . . . . . . . 8  |-  ( -.  p  e.  { <.  .0. 
,  .0.  >. }  <->  -.  p  =  <.  .0.  ,  .0.  >.
)
2522, 24sylib 208 . . . . . . 7  |-  ( (
ph  /\  p  e.  ( ( ran  F  X.  ran  G )  \  { <.  .0.  ,  .0.  >. } ) )  ->  -.  p  =  <.  .0. 
,  .0.  >. )
26 eqopi 7202 . . . . . . . . . 10  |-  ( ( p  e.  ( ran 
F  X.  ran  G
)  /\  ( ( 1st `  p )  =  .0.  /\  ( 2nd `  p )  =  .0.  ) )  ->  p  =  <.  .0.  ,  .0.  >.
)
2726ex 450 . . . . . . . . 9  |-  ( p  e.  ( ran  F  X.  ran  G )  -> 
( ( ( 1st `  p )  =  .0. 
/\  ( 2nd `  p
)  =  .0.  )  ->  p  =  <.  .0.  ,  .0.  >. ) )
2827con3d 148 . . . . . . . 8  |-  ( p  e.  ( ran  F  X.  ran  G )  -> 
( -.  p  = 
<.  .0.  ,  .0.  >.  ->  -.  ( ( 1st `  p
)  =  .0.  /\  ( 2nd `  p )  =  .0.  ) ) )
2928imp 445 . . . . . . 7  |-  ( ( p  e.  ( ran 
F  X.  ran  G
)  /\  -.  p  =  <.  .0.  ,  .0.  >.
)  ->  -.  (
( 1st `  p
)  =  .0.  /\  ( 2nd `  p )  =  .0.  ) )
3017, 25, 29syl2anc 693 . . . . . 6  |-  ( (
ph  /\  p  e.  ( ( ran  F  X.  ran  G )  \  { <.  .0.  ,  .0.  >. } ) )  ->  -.  ( ( 1st `  p
)  =  .0.  /\  ( 2nd `  p )  =  .0.  ) )
31 ianor 509 . . . . . . 7  |-  ( -.  ( ( 1st `  p
)  =  .0.  /\  ( 2nd `  p )  =  .0.  )  <->  ( -.  ( 1st `  p )  =  .0.  \/  -.  ( 2nd `  p )  =  .0.  ) )
32 df-ne 2795 . . . . . . . 8  |-  ( ( 1st `  p )  =/=  .0.  <->  -.  ( 1st `  p )  =  .0.  )
33 df-ne 2795 . . . . . . . 8  |-  ( ( 2nd `  p )  =/=  .0.  <->  -.  ( 2nd `  p )  =  .0.  )
3432, 33orbi12i 543 . . . . . . 7  |-  ( ( ( 1st `  p
)  =/=  .0.  \/  ( 2nd `  p )  =/=  .0.  )  <->  ( -.  ( 1st `  p )  =  .0.  \/  -.  ( 2nd `  p )  =  .0.  ) )
3531, 34bitr4i 267 . . . . . 6  |-  ( -.  ( ( 1st `  p
)  =  .0.  /\  ( 2nd `  p )  =  .0.  )  <->  ( ( 1st `  p )  =/= 
.0.  \/  ( 2nd `  p )  =/=  .0.  ) )
3630, 35sylib 208 . . . . 5  |-  ( (
ph  /\  p  e.  ( ( ran  F  X.  ran  G )  \  { <.  .0.  ,  .0.  >. } ) )  -> 
( ( 1st `  p
)  =/=  .0.  \/  ( 2nd `  p )  =/=  .0.  ) )
37 sitgval.b . . . . . 6  |-  B  =  ( Base `  W
)
38 sitgval.j . . . . . 6  |-  J  =  ( TopOpen `  W )
39 sitgval.s . . . . . 6  |-  S  =  (sigaGen `  J )
40 sitgval.0 . . . . . 6  |-  .0.  =  ( 0g `  W )
41 sitgval.x . . . . . 6  |-  .x.  =  ( .s `  W )
42 sitgval.1 . . . . . 6  |-  ( ph  ->  W  e.  V )
43 sitgval.2 . . . . . 6  |-  ( ph  ->  M  e.  U. ran measures )
44 sitgadd.4 . . . . . 6  |-  ( ph  ->  F  e.  dom  ( Wsitg M ) )
45 sitgadd.5 . . . . . 6  |-  ( ph  ->  G  e.  dom  ( Wsitg M ) )
46 sitgadd.1 . . . . . 6  |-  ( ph  ->  W  e.  TopSp )
47 sitgadd.3 . . . . . 6  |-  ( ph  ->  J  e.  Fre )
4837, 38, 39, 40, 41, 8, 42, 43, 44, 45, 46, 47sibfinima 30401 . . . . 5  |-  ( ( ( ph  /\  ( 1st `  p )  e. 
ran  F  /\  ( 2nd `  p )  e. 
ran  G )  /\  ( ( 1st `  p
)  =/=  .0.  \/  ( 2nd `  p )  =/=  .0.  ) )  ->  ( M `  ( ( `' F " { ( 1st `  p
) } )  i^i  ( `' G " { ( 2nd `  p
) } ) ) )  e.  ( 0 [,) +oo ) )
493, 19, 21, 36, 48syl31anc 1329 . . . 4  |-  ( (
ph  /\  p  e.  ( ( ran  F  X.  ran  G )  \  { <.  .0.  ,  .0.  >. } ) )  -> 
( M `  (
( `' F " { ( 1st `  p
) } )  i^i  ( `' G " { ( 2nd `  p
) } ) ) )  e.  ( 0 [,) +oo ) )
50 fnfvima 6496 . . . 4  |-  ( ( H  Fn  RR  /\  ( 0 [,) +oo )  C_  RR  /\  ( M `  ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) ) )  e.  ( 0 [,) +oo ) )  ->  ( H `  ( M `  ( ( `' F " { ( 1st `  p
) } )  i^i  ( `' G " { ( 2nd `  p
) } ) ) ) )  e.  ( H " ( 0 [,) +oo ) ) )
5113, 15, 49, 50syl3anc 1326 . . 3  |-  ( (
ph  /\  p  e.  ( ( ran  F  X.  ran  G )  \  { <.  .0.  ,  .0.  >. } ) )  -> 
( H `  ( M `  ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) ) ) )  e.  ( H
" ( 0 [,) +oo ) ) )
52 imassrn 5477 . . . . . 6  |-  ( H
" ( 0 [,) +oo ) )  C_  ran  H
53 frn 6053 . . . . . . 7  |-  ( H : RR --> ( Base `  (Scalar `  W )
)  ->  ran  H  C_  ( Base `  (Scalar `  W
) ) )
5410, 53syl 17 . . . . . 6  |-  ( ph  ->  ran  H  C_  ( Base `  (Scalar `  W
) ) )
5552, 54syl5ss 3614 . . . . 5  |-  ( ph  ->  ( H " (
0 [,) +oo )
)  C_  ( Base `  (Scalar `  W )
) )
56 eqid 2622 . . . . . 6  |-  ( (Scalar `  W )s  ( H "
( 0 [,) +oo ) ) )  =  ( (Scalar `  W
)s  ( H " (
0 [,) +oo )
) )
5756, 5ressbas2 15931 . . . . 5  |-  ( ( H " ( 0 [,) +oo ) ) 
C_  ( Base `  (Scalar `  W ) )  -> 
( H " (
0 [,) +oo )
)  =  ( Base `  ( (Scalar `  W
)s  ( H " (
0 [,) +oo )
) ) ) )
5855, 57syl 17 . . . 4  |-  ( ph  ->  ( H " (
0 [,) +oo )
)  =  ( Base `  ( (Scalar `  W
)s  ( H " (
0 [,) +oo )
) ) ) )
593, 58syl 17 . . 3  |-  ( (
ph  /\  p  e.  ( ( ran  F  X.  ran  G )  \  { <.  .0.  ,  .0.  >. } ) )  -> 
( H " (
0 [,) +oo )
)  =  ( Base `  ( (Scalar `  W
)s  ( H " (
0 [,) +oo )
) ) ) )
6051, 59eleqtrd 2703 . 2  |-  ( (
ph  /\  p  e.  ( ( ran  F  X.  ran  G )  \  { <.  .0.  ,  .0.  >. } ) )  -> 
( H `  ( M `  ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) ) ) )  e.  ( Base `  ( (Scalar `  W
)s  ( H " (
0 [,) +oo )
) ) ) )
6137, 38, 39, 40, 41, 8, 42, 43, 45sibff 30398 . . . . . 6  |-  ( ph  ->  G : U. dom  M --> U. J )
6237, 38tpsuni 20740 . . . . . . 7  |-  ( W  e.  TopSp  ->  B  =  U. J )
63 feq3 6028 . . . . . . 7  |-  ( B  =  U. J  -> 
( G : U. dom  M --> B  <->  G : U. dom  M --> U. J
) )
6446, 62, 633syl 18 . . . . . 6  |-  ( ph  ->  ( G : U. dom  M --> B  <->  G : U. dom  M --> U. J
) )
6561, 64mpbird 247 . . . . 5  |-  ( ph  ->  G : U. dom  M --> B )
66 frn 6053 . . . . 5  |-  ( G : U. dom  M --> B  ->  ran  G  C_  B
)
6765, 66syl 17 . . . 4  |-  ( ph  ->  ran  G  C_  B
)
6867adantr 481 . . 3  |-  ( (
ph  /\  p  e.  ( ( ran  F  X.  ran  G )  \  { <.  .0.  ,  .0.  >. } ) )  ->  ran  G  C_  B )
6968, 21sseldd 3604 . 2  |-  ( (
ph  /\  p  e.  ( ( ran  F  X.  ran  G )  \  { <.  .0.  ,  .0.  >. } ) )  -> 
( 2nd `  p
)  e.  B )
70 fvex 6201 . . . . 5  |-  (RRHom `  (Scalar `  W ) )  e.  _V
718, 70eqeltri 2697 . . . 4  |-  H  e. 
_V
72 imaexg 7103 . . . 4  |-  ( H  e.  _V  ->  ( H " ( 0 [,) +oo ) )  e.  _V )
73 eqid 2622 . . . . 5  |-  ( Wv  ( H " ( 0 [,) +oo ) ) )  =  ( Wv  ( H " ( 0 [,) +oo ) ) )
7473, 37resvbas 29832 . . . 4  |-  ( ( H " ( 0 [,) +oo ) )  e.  _V  ->  B  =  ( Base `  ( Wv  ( H " ( 0 [,) +oo ) ) ) ) )
7571, 72, 74mp2b 10 . . 3  |-  B  =  ( Base `  ( Wv  ( H " ( 0 [,) +oo ) ) ) )
76 eqid 2622 . . . . 5  |-  (Scalar `  W )  =  (Scalar `  W )
7773, 76, 5resvsca 29830 . . . 4  |-  ( ( H " ( 0 [,) +oo ) )  e.  _V  ->  (
(Scalar `  W )s  ( H " ( 0 [,) +oo ) ) )  =  (Scalar `  ( Wv  ( H " ( 0 [,) +oo ) ) ) ) )
7871, 72, 77mp2b 10 . . 3  |-  ( (Scalar `  W )s  ( H "
( 0 [,) +oo ) ) )  =  (Scalar `  ( Wv  ( H " ( 0 [,) +oo ) ) ) )
7973, 41resvvsca 29834 . . . 4  |-  ( ( H " ( 0 [,) +oo ) )  e.  _V  ->  .x.  =  ( .s `  ( Wv  ( H " ( 0 [,) +oo ) ) ) ) )
8071, 72, 79mp2b 10 . . 3  |-  .x.  =  ( .s `  ( Wv  ( H " ( 0 [,) +oo ) ) ) )
81 eqid 2622 . . 3  |-  ( Base `  ( (Scalar `  W
)s  ( H " (
0 [,) +oo )
) ) )  =  ( Base `  (
(Scalar `  W )s  ( H " ( 0 [,) +oo ) ) ) )
8275, 78, 80, 81slmdvscl 29767 . 2  |-  ( ( ( Wv  ( H "
( 0 [,) +oo ) ) )  e. SLMod  /\  ( H `  ( M `  ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) ) ) )  e.  ( Base `  ( (Scalar `  W
)s  ( H " (
0 [,) +oo )
) ) )  /\  ( 2nd `  p )  e.  B )  -> 
( ( H `  ( M `  ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) ) ) )  .x.  ( 2nd `  p ) )  e.  B )
832, 60, 69, 82syl3anc 1326 1  |-  ( (
ph  /\  p  e.  ( ( ran  F  X.  ran  G )  \  { <.  .0.  ,  .0.  >. } ) )  -> 
( ( H `  ( M `  ( ( `' F " { ( 1st `  p ) } )  i^i  ( `' G " { ( 2nd `  p ) } ) ) ) )  .x.  ( 2nd `  p ) )  e.  B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200    \ cdif 3571    i^i cin 3573    C_ wss 3574   {csn 4177   <.cop 4183   U.cuni 4436    X. cxp 5112   `'ccnv 5113   dom cdm 5114   ran crn 5115   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   RRcr 9935   0cc0 9936   +oocpnf 10071   [,)cico 12177   Basecbs 15857   ↾s cress 15858   +g cplusg 15941  Scalarcsca 15944   .scvsca 15945   TopOpenctopn 16082   0gc0g 16100   TopSpctps 20736   Frect1 21111  SLModcslmd 29753   ↾v cresv 29824  RRHomcrrh 30037   ℝExt crrext 30038  sigaGencsigagen 30201  measurescmeas 30258  sitgcsitg 30391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-ac2 9285  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-tpos 7352  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-ac 8939  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-dvds 14984  df-gcd 15217  df-numer 15443  df-denom 15444  df-gz 15634  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-ordt 16161  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-ps 17200  df-tsr 17201  df-plusf 17241  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-ghm 17658  df-cntz 17750  df-od 17948  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-oppr 18623  df-dvdsr 18641  df-unit 18642  df-invr 18672  df-dvr 18683  df-rnghom 18715  df-drng 18749  df-subrg 18778  df-abv 18817  df-lmod 18865  df-scaf 18866  df-sra 19172  df-rgmod 19173  df-nzr 19258  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-metu 19745  df-cnfld 19747  df-zring 19819  df-zrh 19852  df-zlm 19853  df-chr 19854  df-refld 19951  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-t1 21118  df-haus 21119  df-reg 21120  df-cmp 21190  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-fcls 21745  df-cnext 21864  df-tmd 21876  df-tgp 21877  df-tsms 21930  df-trg 21963  df-ust 22004  df-utop 22035  df-uss 22060  df-usp 22061  df-ucn 22080  df-cfilu 22091  df-cusp 22102  df-xms 22125  df-ms 22126  df-tms 22127  df-nm 22387  df-ngp 22388  df-nrg 22390  df-nlm 22391  df-ii 22680  df-cncf 22681  df-cfil 23053  df-cmet 23055  df-cms 23132  df-limc 23630  df-dv 23631  df-log 24303  df-slmd 29754  df-resv 29825  df-qqh 30017  df-rrh 30039  df-rrext 30043  df-esum 30090  df-siga 30171  df-sigagen 30202  df-meas 30259  df-mbfm 30313  df-sitg 30392
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator