Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nolesgn2o Structured version   Visualization version   Unicode version

Theorem nolesgn2o 31824
Description: Given  A less than or equal to  B, equal to  B up to 
X, and  A ( X )  =  2o, then  B
( X )  =  2o. (Contributed by Scott Fenton, 6-Dec-2021.)
Assertion
Ref Expression
nolesgn2o  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X
)  =  2o )  /\  -.  B <s A )  -> 
( B `  X
)  =  2o )

Proof of Theorem nolesgn2o
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl2 1065 . . . . . 6  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X
)  =  2o ) )  ->  B  e.  No )
2 nofv 31810 . . . . . 6  |-  ( B  e.  No  ->  (
( B `  X
)  =  (/)  \/  ( B `  X )  =  1o  \/  ( B `  X )  =  2o ) )
31, 2syl 17 . . . . 5  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X
)  =  2o ) )  ->  ( ( B `  X )  =  (/)  \/  ( B `
 X )  =  1o  \/  ( B `
 X )  =  2o ) )
4 3orel3 31593 . . . . 5  |-  ( -.  ( B `  X
)  =  2o  ->  ( ( ( B `  X )  =  (/)  \/  ( B `  X
)  =  1o  \/  ( B `  X )  =  2o )  -> 
( ( B `  X )  =  (/)  \/  ( B `  X
)  =  1o ) ) )
53, 4syl5com 31 . . . 4  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X
)  =  2o ) )  ->  ( -.  ( B `  X )  =  2o  ->  (
( B `  X
)  =  (/)  \/  ( B `  X )  =  1o ) ) )
6 simp13 1093 . . . . . . 7  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X
)  =  2o )  /\  ( ( B `
 X )  =  (/)  \/  ( B `  X )  =  1o ) )  ->  X  e.  On )
7 fveq1 6190 . . . . . . . . . . . . 13  |-  ( ( A  |`  X )  =  ( B  |`  X )  ->  (
( A  |`  X ) `
 y )  =  ( ( B  |`  X ) `  y
) )
87eqcomd 2628 . . . . . . . . . . . 12  |-  ( ( A  |`  X )  =  ( B  |`  X )  ->  (
( B  |`  X ) `
 y )  =  ( ( A  |`  X ) `  y
) )
98adantr 481 . . . . . . . . . . 11  |-  ( ( ( A  |`  X )  =  ( B  |`  X )  /\  y  e.  X )  ->  (
( B  |`  X ) `
 y )  =  ( ( A  |`  X ) `  y
) )
10 simpr 477 . . . . . . . . . . . 12  |-  ( ( ( A  |`  X )  =  ( B  |`  X )  /\  y  e.  X )  ->  y  e.  X )
1110fvresd 6208 . . . . . . . . . . 11  |-  ( ( ( A  |`  X )  =  ( B  |`  X )  /\  y  e.  X )  ->  (
( B  |`  X ) `
 y )  =  ( B `  y
) )
1210fvresd 6208 . . . . . . . . . . 11  |-  ( ( ( A  |`  X )  =  ( B  |`  X )  /\  y  e.  X )  ->  (
( A  |`  X ) `
 y )  =  ( A `  y
) )
139, 11, 123eqtr3d 2664 . . . . . . . . . 10  |-  ( ( ( A  |`  X )  =  ( B  |`  X )  /\  y  e.  X )  ->  ( B `  y )  =  ( A `  y ) )
1413ralrimiva 2966 . . . . . . . . 9  |-  ( ( A  |`  X )  =  ( B  |`  X )  ->  A. y  e.  X  ( B `  y )  =  ( A `  y ) )
1514adantr 481 . . . . . . . 8  |-  ( ( ( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X )  =  2o )  ->  A. y  e.  X  ( B `  y )  =  ( A `  y ) )
16153ad2ant2 1083 . . . . . . 7  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X
)  =  2o )  /\  ( ( B `
 X )  =  (/)  \/  ( B `  X )  =  1o ) )  ->  A. y  e.  X  ( B `  y )  =  ( A `  y ) )
17 simprr 796 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X
)  =  2o ) )  ->  ( A `  X )  =  2o )
1817a1d 25 . . . . . . . . . . . 12  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X
)  =  2o ) )  ->  ( ( B `  X )  =  (/)  ->  ( A `  X )  =  2o ) )
1918ancld 576 . . . . . . . . . . 11  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X
)  =  2o ) )  ->  ( ( B `  X )  =  (/)  ->  ( ( B `  X )  =  (/)  /\  ( A `
 X )  =  2o ) ) )
2017a1d 25 . . . . . . . . . . . 12  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X
)  =  2o ) )  ->  ( ( B `  X )  =  1o  ->  ( A `
 X )  =  2o ) )
2120ancld 576 . . . . . . . . . . 11  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X
)  =  2o ) )  ->  ( ( B `  X )  =  1o  ->  ( ( B `  X )  =  1o  /\  ( A `  X )  =  2o ) ) )
2219, 21orim12d 883 . . . . . . . . . 10  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X
)  =  2o ) )  ->  ( (
( B `  X
)  =  (/)  \/  ( B `  X )  =  1o )  ->  (
( ( B `  X )  =  (/)  /\  ( A `  X
)  =  2o )  \/  ( ( B `
 X )  =  1o  /\  ( A `
 X )  =  2o ) ) ) )
23223impia 1261 . . . . . . . . 9  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X
)  =  2o )  /\  ( ( B `
 X )  =  (/)  \/  ( B `  X )  =  1o ) )  ->  (
( ( B `  X )  =  (/)  /\  ( A `  X
)  =  2o )  \/  ( ( B `
 X )  =  1o  /\  ( A `
 X )  =  2o ) ) )
24 3mix3 1232 . . . . . . . . . 10  |-  ( ( ( B `  X
)  =  (/)  /\  ( A `  X )  =  2o )  ->  (
( ( B `  X )  =  1o 
/\  ( A `  X )  =  (/) )  \/  ( ( B `  X )  =  1o  /\  ( A `  X )  =  2o )  \/  (
( B `  X
)  =  (/)  /\  ( A `  X )  =  2o ) ) )
25 3mix2 1231 . . . . . . . . . 10  |-  ( ( ( B `  X
)  =  1o  /\  ( A `  X )  =  2o )  -> 
( ( ( B `
 X )  =  1o  /\  ( A `
 X )  =  (/) )  \/  (
( B `  X
)  =  1o  /\  ( A `  X )  =  2o )  \/  ( ( B `  X )  =  (/)  /\  ( A `  X
)  =  2o ) ) )
2624, 25jaoi 394 . . . . . . . . 9  |-  ( ( ( ( B `  X )  =  (/)  /\  ( A `  X
)  =  2o )  \/  ( ( B `
 X )  =  1o  /\  ( A `
 X )  =  2o ) )  -> 
( ( ( B `
 X )  =  1o  /\  ( A `
 X )  =  (/) )  \/  (
( B `  X
)  =  1o  /\  ( A `  X )  =  2o )  \/  ( ( B `  X )  =  (/)  /\  ( A `  X
)  =  2o ) ) )
2723, 26syl 17 . . . . . . . 8  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X
)  =  2o )  /\  ( ( B `
 X )  =  (/)  \/  ( B `  X )  =  1o ) )  ->  (
( ( B `  X )  =  1o 
/\  ( A `  X )  =  (/) )  \/  ( ( B `  X )  =  1o  /\  ( A `  X )  =  2o )  \/  (
( B `  X
)  =  (/)  /\  ( A `  X )  =  2o ) ) )
28 fvex 6201 . . . . . . . . 9  |-  ( B `
 X )  e. 
_V
29 fvex 6201 . . . . . . . . 9  |-  ( A `
 X )  e. 
_V
3028, 29brtp 31639 . . . . . . . 8  |-  ( ( B `  X ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( A `  X
)  <->  ( ( ( B `  X )  =  1o  /\  ( A `  X )  =  (/) )  \/  (
( B `  X
)  =  1o  /\  ( A `  X )  =  2o )  \/  ( ( B `  X )  =  (/)  /\  ( A `  X
)  =  2o ) ) )
3127, 30sylibr 224 . . . . . . 7  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X
)  =  2o )  /\  ( ( B `
 X )  =  (/)  \/  ( B `  X )  =  1o ) )  ->  ( B `  X ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( A `  X
) )
32 raleq 3138 . . . . . . . . 9  |-  ( x  =  X  ->  ( A. y  e.  x  ( B `  y )  =  ( A `  y )  <->  A. y  e.  X  ( B `  y )  =  ( A `  y ) ) )
33 fveq2 6191 . . . . . . . . . 10  |-  ( x  =  X  ->  ( B `  x )  =  ( B `  X ) )
34 fveq2 6191 . . . . . . . . . 10  |-  ( x  =  X  ->  ( A `  x )  =  ( A `  X ) )
3533, 34breq12d 4666 . . . . . . . . 9  |-  ( x  =  X  ->  (
( B `  x
) { <. 1o ,  (/)
>. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( A `  x )  <->  ( B `  X ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( A `  X ) ) )
3632, 35anbi12d 747 . . . . . . . 8  |-  ( x  =  X  ->  (
( A. y  e.  x  ( B `  y )  =  ( A `  y )  /\  ( B `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( A `  x ) )  <->  ( A. y  e.  X  ( B `  y )  =  ( A `  y )  /\  ( B `  X ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( A `  X
) ) ) )
3736rspcev 3309 . . . . . . 7  |-  ( ( X  e.  On  /\  ( A. y  e.  X  ( B `  y )  =  ( A `  y )  /\  ( B `  X ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( A `  X
) ) )  ->  E. x  e.  On  ( A. y  e.  x  ( B `  y )  =  ( A `  y )  /\  ( B `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( A `  x
) ) )
386, 16, 31, 37syl12anc 1324 . . . . . 6  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X
)  =  2o )  /\  ( ( B `
 X )  =  (/)  \/  ( B `  X )  =  1o ) )  ->  E. x  e.  On  ( A. y  e.  x  ( B `  y )  =  ( A `  y )  /\  ( B `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( A `  x ) ) )
39 simp12 1092 . . . . . . 7  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X
)  =  2o )  /\  ( ( B `
 X )  =  (/)  \/  ( B `  X )  =  1o ) )  ->  B  e.  No )
40 simp11 1091 . . . . . . 7  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X
)  =  2o )  /\  ( ( B `
 X )  =  (/)  \/  ( B `  X )  =  1o ) )  ->  A  e.  No )
41 sltval 31800 . . . . . . 7  |-  ( ( B  e.  No  /\  A  e.  No )  ->  ( B <s
A  <->  E. x  e.  On  ( A. y  e.  x  ( B `  y )  =  ( A `  y )  /\  ( B `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( A `  x
) ) ) )
4239, 40, 41syl2anc 693 . . . . . 6  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X
)  =  2o )  /\  ( ( B `
 X )  =  (/)  \/  ( B `  X )  =  1o ) )  ->  ( B <s A  <->  E. x  e.  On  ( A. y  e.  x  ( B `  y )  =  ( A `  y )  /\  ( B `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( A `  x ) ) ) )
4338, 42mpbird 247 . . . . 5  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X
)  =  2o )  /\  ( ( B `
 X )  =  (/)  \/  ( B `  X )  =  1o ) )  ->  B <s A )
44433expia 1267 . . . 4  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X
)  =  2o ) )  ->  ( (
( B `  X
)  =  (/)  \/  ( B `  X )  =  1o )  ->  B <s A ) )
455, 44syld 47 . . 3  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X
)  =  2o ) )  ->  ( -.  ( B `  X )  =  2o  ->  B <s A ) )
4645con1d 139 . 2  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X
)  =  2o ) )  ->  ( -.  B <s A  -> 
( B `  X
)  =  2o ) )
47463impia 1261 1  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  ( A `  X
)  =  2o )  /\  -.  B <s A )  -> 
( B `  X
)  =  2o )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    \/ w3o 1036    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   (/)c0 3915   {ctp 4181   <.cop 4183   class class class wbr 4653    |` cres 5116   Oncon0 5723   ` cfv 5888   1oc1o 7553   2oc2o 7554   Nocsur 31793   <scslt 31794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-1o 7560  df-2o 7561  df-no 31796  df-slt 31797
This theorem is referenced by:  nolesgn2ores  31825
  Copyright terms: Public domain W3C validator