Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nolt02o Structured version   Visualization version   Unicode version

Theorem nolt02o 31845
Description: Given  A less than  B, equal to  B up to  X, and undefined at  X, then  B ( X )  =  2o. (Contributed by Scott Fenton, 6-Dec-2021.)
Assertion
Ref Expression
nolt02o  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  A <s B )  /\  ( A `
 X )  =  (/) )  ->  ( B `
 X )  =  2o )

Proof of Theorem nolt02o
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp11 1091 . . . . 5  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  A <s B )  /\  ( A `
 X )  =  (/) )  ->  A  e.  No )
2 sltso 31827 . . . . . 6  |-  <s  Or  No
3 sonr 5056 . . . . . 6  |-  ( ( <s  Or  No  /\  A  e.  No )  ->  -.  A <s A )
42, 3mpan 706 . . . . 5  |-  ( A  e.  No  ->  -.  A <s A )
51, 4syl 17 . . . 4  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  A <s B )  /\  ( A `
 X )  =  (/) )  ->  -.  A <s A )
6 simp2r 1088 . . . . 5  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  A <s B )  /\  ( A `
 X )  =  (/) )  ->  A <s B )
7 breq2 4657 . . . . 5  |-  ( A  =  B  ->  ( A <s A  <->  A <s B ) )
86, 7syl5ibrcom 237 . . . 4  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  A <s B )  /\  ( A `
 X )  =  (/) )  ->  ( A  =  B  ->  A <s A ) )
95, 8mtod 189 . . 3  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  A <s B )  /\  ( A `
 X )  =  (/) )  ->  -.  A  =  B )
10 simpl2l 1114 . . . 4  |-  ( ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  (
( A  |`  X )  =  ( B  |`  X )  /\  A <s B )  /\  ( A `  X )  =  (/) )  /\  ( B `  X )  =  (/) )  ->  ( A  |`  X )  =  ( B  |`  X ) )
11 simpl11 1136 . . . . . 6  |-  ( ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  (
( A  |`  X )  =  ( B  |`  X )  /\  A <s B )  /\  ( A `  X )  =  (/) )  /\  ( B `  X )  =  (/) )  ->  A  e.  No )
12 nofun 31802 . . . . . 6  |-  ( A  e.  No  ->  Fun  A )
13 funrel 5905 . . . . . 6  |-  ( Fun 
A  ->  Rel  A )
1411, 12, 133syl 18 . . . . 5  |-  ( ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  (
( A  |`  X )  =  ( B  |`  X )  /\  A <s B )  /\  ( A `  X )  =  (/) )  /\  ( B `  X )  =  (/) )  ->  Rel  A )
15 simpl13 1138 . . . . . 6  |-  ( ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  (
( A  |`  X )  =  ( B  |`  X )  /\  A <s B )  /\  ( A `  X )  =  (/) )  /\  ( B `  X )  =  (/) )  ->  X  e.  On )
16 simpl3 1066 . . . . . 6  |-  ( ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  (
( A  |`  X )  =  ( B  |`  X )  /\  A <s B )  /\  ( A `  X )  =  (/) )  /\  ( B `  X )  =  (/) )  ->  ( A `  X )  =  (/) )
17 nolt02olem 31844 . . . . . 6  |-  ( ( A  e.  No  /\  X  e.  On  /\  ( A `  X )  =  (/) )  ->  dom  A 
C_  X )
1811, 15, 16, 17syl3anc 1326 . . . . 5  |-  ( ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  (
( A  |`  X )  =  ( B  |`  X )  /\  A <s B )  /\  ( A `  X )  =  (/) )  /\  ( B `  X )  =  (/) )  ->  dom  A 
C_  X )
19 relssres 5437 . . . . 5  |-  ( ( Rel  A  /\  dom  A 
C_  X )  -> 
( A  |`  X )  =  A )
2014, 18, 19syl2anc 693 . . . 4  |-  ( ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  (
( A  |`  X )  =  ( B  |`  X )  /\  A <s B )  /\  ( A `  X )  =  (/) )  /\  ( B `  X )  =  (/) )  ->  ( A  |`  X )  =  A )
21 simpl12 1137 . . . . . 6  |-  ( ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  (
( A  |`  X )  =  ( B  |`  X )  /\  A <s B )  /\  ( A `  X )  =  (/) )  /\  ( B `  X )  =  (/) )  ->  B  e.  No )
22 nofun 31802 . . . . . 6  |-  ( B  e.  No  ->  Fun  B )
23 funrel 5905 . . . . . 6  |-  ( Fun 
B  ->  Rel  B )
2421, 22, 233syl 18 . . . . 5  |-  ( ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  (
( A  |`  X )  =  ( B  |`  X )  /\  A <s B )  /\  ( A `  X )  =  (/) )  /\  ( B `  X )  =  (/) )  ->  Rel  B )
25 simpr 477 . . . . . 6  |-  ( ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  (
( A  |`  X )  =  ( B  |`  X )  /\  A <s B )  /\  ( A `  X )  =  (/) )  /\  ( B `  X )  =  (/) )  ->  ( B `  X )  =  (/) )
26 nolt02olem 31844 . . . . . 6  |-  ( ( B  e.  No  /\  X  e.  On  /\  ( B `  X )  =  (/) )  ->  dom  B 
C_  X )
2721, 15, 25, 26syl3anc 1326 . . . . 5  |-  ( ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  (
( A  |`  X )  =  ( B  |`  X )  /\  A <s B )  /\  ( A `  X )  =  (/) )  /\  ( B `  X )  =  (/) )  ->  dom  B 
C_  X )
28 relssres 5437 . . . . 5  |-  ( ( Rel  B  /\  dom  B 
C_  X )  -> 
( B  |`  X )  =  B )
2924, 27, 28syl2anc 693 . . . 4  |-  ( ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  (
( A  |`  X )  =  ( B  |`  X )  /\  A <s B )  /\  ( A `  X )  =  (/) )  /\  ( B `  X )  =  (/) )  ->  ( B  |`  X )  =  B )
3010, 20, 293eqtr3d 2664 . . 3  |-  ( ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  (
( A  |`  X )  =  ( B  |`  X )  /\  A <s B )  /\  ( A `  X )  =  (/) )  /\  ( B `  X )  =  (/) )  ->  A  =  B )
319, 30mtand 691 . 2  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  A <s B )  /\  ( A `
 X )  =  (/) )  ->  -.  ( B `  X )  =  (/) )
32 simp12 1092 . . . . . 6  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  A <s B )  /\  ( A `
 X )  =  (/) )  ->  B  e.  No )
33 sltval 31800 . . . . . 6  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( A <s
B  <->  E. x  e.  On  ( A. y  e.  x  ( A `  y )  =  ( B `  y )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x
) ) ) )
341, 32, 33syl2anc 693 . . . . 5  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  A <s B )  /\  ( A `
 X )  =  (/) )  ->  ( A <s B  <->  E. x  e.  On  ( A. y  e.  x  ( A `  y )  =  ( B `  y )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x ) ) ) )
356, 34mpbid 222 . . . 4  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  A <s B )  /\  ( A `
 X )  =  (/) )  ->  E. x  e.  On  ( A. y  e.  x  ( A `  y )  =  ( B `  y )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x ) ) )
36 df-an 386 . . . . . 6  |-  ( ( A. y  e.  x  ( A `  y )  =  ( B `  y )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x
) )  <->  -.  ( A. y  e.  x  ( A `  y )  =  ( B `  y )  ->  -.  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x
) ) )
3736rexbii 3041 . . . . 5  |-  ( E. x  e.  On  ( A. y  e.  x  ( A `  y )  =  ( B `  y )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x
) )  <->  E. x  e.  On  -.  ( A. y  e.  x  ( A `  y )  =  ( B `  y )  ->  -.  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x
) ) )
38 rexnal 2995 . . . . 5  |-  ( E. x  e.  On  -.  ( A. y  e.  x  ( A `  y )  =  ( B `  y )  ->  -.  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x
) )  <->  -.  A. x  e.  On  ( A. y  e.  x  ( A `  y )  =  ( B `  y )  ->  -.  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x ) ) )
3937, 38bitri 264 . . . 4  |-  ( E. x  e.  On  ( A. y  e.  x  ( A `  y )  =  ( B `  y )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x
) )  <->  -.  A. x  e.  On  ( A. y  e.  x  ( A `  y )  =  ( B `  y )  ->  -.  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x ) ) )
4035, 39sylib 208 . . 3  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  A <s B )  /\  ( A `
 X )  =  (/) )  ->  -.  A. x  e.  On  ( A. y  e.  x  ( A `  y )  =  ( B `  y )  ->  -.  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x
) ) )
41 1on 7567 . . . . . . . . . . . . 13  |-  1o  e.  On
4241elexi 3213 . . . . . . . . . . . 12  |-  1o  e.  _V
4342prid1 4297 . . . . . . . . . . 11  |-  1o  e.  { 1o ,  2o }
4443nosgnn0i 31812 . . . . . . . . . 10  |-  (/)  =/=  1o
4544neii 2796 . . . . . . . . 9  |-  -.  (/)  =  1o
46 simpll3 1102 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  (
( A  |`  X )  =  ( B  |`  X )  /\  A <s B )  /\  ( A `  X )  =  (/) )  /\  ( B `  X )  =  1o )  /\  (
x  e.  On  /\  A. y  e.  x  ( A `  y )  =  ( B `  y ) ) )  ->  ( A `  X )  =  (/) )
47 simplr 792 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  (
( A  |`  X )  =  ( B  |`  X )  /\  A <s B )  /\  ( A `  X )  =  (/) )  /\  ( B `  X )  =  1o )  /\  (
x  e.  On  /\  A. y  e.  x  ( A `  y )  =  ( B `  y ) ) )  ->  ( B `  X )  =  1o )
48 eqeq1 2626 . . . . . . . . . . . . 13  |-  ( ( A `  X )  =  ( B `  X )  ->  (
( A `  X
)  =  (/)  <->  ( B `  X )  =  (/) ) )
4948anbi1d 741 . . . . . . . . . . . 12  |-  ( ( A `  X )  =  ( B `  X )  ->  (
( ( A `  X )  =  (/)  /\  ( B `  X
)  =  1o )  <-> 
( ( B `  X )  =  (/)  /\  ( B `  X
)  =  1o ) ) )
50 eqtr2 2642 . . . . . . . . . . . 12  |-  ( ( ( B `  X
)  =  (/)  /\  ( B `  X )  =  1o )  ->  (/)  =  1o )
5149, 50syl6bi 243 . . . . . . . . . . 11  |-  ( ( A `  X )  =  ( B `  X )  ->  (
( ( A `  X )  =  (/)  /\  ( B `  X
)  =  1o )  ->  (/)  =  1o ) )
5251com12 32 . . . . . . . . . 10  |-  ( ( ( A `  X
)  =  (/)  /\  ( B `  X )  =  1o )  ->  (
( A `  X
)  =  ( B `
 X )  ->  (/)  =  1o ) )
5346, 47, 52syl2anc 693 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  (
( A  |`  X )  =  ( B  |`  X )  /\  A <s B )  /\  ( A `  X )  =  (/) )  /\  ( B `  X )  =  1o )  /\  (
x  e.  On  /\  A. y  e.  x  ( A `  y )  =  ( B `  y ) ) )  ->  ( ( A `
 X )  =  ( B `  X
)  ->  (/)  =  1o ) )
5445, 53mtoi 190 . . . . . . . 8  |-  ( ( ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  (
( A  |`  X )  =  ( B  |`  X )  /\  A <s B )  /\  ( A `  X )  =  (/) )  /\  ( B `  X )  =  1o )  /\  (
x  e.  On  /\  A. y  e.  x  ( A `  y )  =  ( B `  y ) ) )  ->  -.  ( A `  X )  =  ( B `  X ) )
55 simpr 477 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  (
( A  |`  X )  =  ( B  |`  X )  /\  A <s B )  /\  ( A `  X )  =  (/) )  /\  ( B `  X )  =  1o )  /\  (
x  e.  On  /\  A. y  e.  x  ( A `  y )  =  ( B `  y ) ) )  /\  X  e.  x
)  ->  X  e.  x )
56 simplrr 801 . . . . . . . . 9  |-  ( ( ( ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  (
( A  |`  X )  =  ( B  |`  X )  /\  A <s B )  /\  ( A `  X )  =  (/) )  /\  ( B `  X )  =  1o )  /\  (
x  e.  On  /\  A. y  e.  x  ( A `  y )  =  ( B `  y ) ) )  /\  X  e.  x
)  ->  A. y  e.  x  ( A `  y )  =  ( B `  y ) )
57 fveq2 6191 . . . . . . . . . . 11  |-  ( y  =  X  ->  ( A `  y )  =  ( A `  X ) )
58 fveq2 6191 . . . . . . . . . . 11  |-  ( y  =  X  ->  ( B `  y )  =  ( B `  X ) )
5957, 58eqeq12d 2637 . . . . . . . . . 10  |-  ( y  =  X  ->  (
( A `  y
)  =  ( B `
 y )  <->  ( A `  X )  =  ( B `  X ) ) )
6059rspcv 3305 . . . . . . . . 9  |-  ( X  e.  x  ->  ( A. y  e.  x  ( A `  y )  =  ( B `  y )  ->  ( A `  X )  =  ( B `  X ) ) )
6155, 56, 60sylc 65 . . . . . . . 8  |-  ( ( ( ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  (
( A  |`  X )  =  ( B  |`  X )  /\  A <s B )  /\  ( A `  X )  =  (/) )  /\  ( B `  X )  =  1o )  /\  (
x  e.  On  /\  A. y  e.  x  ( A `  y )  =  ( B `  y ) ) )  /\  X  e.  x
)  ->  ( A `  X )  =  ( B `  X ) )
6254, 61mtand 691 . . . . . . 7  |-  ( ( ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  (
( A  |`  X )  =  ( B  |`  X )  /\  A <s B )  /\  ( A `  X )  =  (/) )  /\  ( B `  X )  =  1o )  /\  (
x  e.  On  /\  A. y  e.  x  ( A `  y )  =  ( B `  y ) ) )  ->  -.  X  e.  x )
63 simprl 794 . . . . . . . 8  |-  ( ( ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  (
( A  |`  X )  =  ( B  |`  X )  /\  A <s B )  /\  ( A `  X )  =  (/) )  /\  ( B `  X )  =  1o )  /\  (
x  e.  On  /\  A. y  e.  x  ( A `  y )  =  ( B `  y ) ) )  ->  x  e.  On )
64 simpl13 1138 . . . . . . . . 9  |-  ( ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  (
( A  |`  X )  =  ( B  |`  X )  /\  A <s B )  /\  ( A `  X )  =  (/) )  /\  ( B `  X )  =  1o )  ->  X  e.  On )
6564adantr 481 . . . . . . . 8  |-  ( ( ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  (
( A  |`  X )  =  ( B  |`  X )  /\  A <s B )  /\  ( A `  X )  =  (/) )  /\  ( B `  X )  =  1o )  /\  (
x  e.  On  /\  A. y  e.  x  ( A `  y )  =  ( B `  y ) ) )  ->  X  e.  On )
66 ontri1 5757 . . . . . . . 8  |-  ( ( x  e.  On  /\  X  e.  On )  ->  ( x  C_  X  <->  -.  X  e.  x ) )
6763, 65, 66syl2anc 693 . . . . . . 7  |-  ( ( ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  (
( A  |`  X )  =  ( B  |`  X )  /\  A <s B )  /\  ( A `  X )  =  (/) )  /\  ( B `  X )  =  1o )  /\  (
x  e.  On  /\  A. y  e.  x  ( A `  y )  =  ( B `  y ) ) )  ->  ( x  C_  X 
<->  -.  X  e.  x
) )
6862, 67mpbird 247 . . . . . 6  |-  ( ( ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  (
( A  |`  X )  =  ( B  |`  X )  /\  A <s B )  /\  ( A `  X )  =  (/) )  /\  ( B `  X )  =  1o )  /\  (
x  e.  On  /\  A. y  e.  x  ( A `  y )  =  ( B `  y ) ) )  ->  x  C_  X
)
69 onsseleq 5765 . . . . . . . 8  |-  ( ( x  e.  On  /\  X  e.  On )  ->  ( x  C_  X  <->  ( x  e.  X  \/  x  =  X )
) )
7063, 65, 69syl2anc 693 . . . . . . 7  |-  ( ( ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  (
( A  |`  X )  =  ( B  |`  X )  /\  A <s B )  /\  ( A `  X )  =  (/) )  /\  ( B `  X )  =  1o )  /\  (
x  e.  On  /\  A. y  e.  x  ( A `  y )  =  ( B `  y ) ) )  ->  ( x  C_  X 
<->  ( x  e.  X  \/  x  =  X
) ) )
71 eqtr2 2642 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  |`  X ) `  x
)  =  (/)  /\  (
( A  |`  X ) `
 x )  =  1o )  ->  (/)  =  1o )
7271ancoms 469 . . . . . . . . . . . . 13  |-  ( ( ( ( A  |`  X ) `  x
)  =  1o  /\  ( ( A  |`  X ) `  x
)  =  (/) )  ->  (/)  =  1o )
7345, 72mto 188 . . . . . . . . . . . 12  |-  -.  (
( ( A  |`  X ) `  x
)  =  1o  /\  ( ( A  |`  X ) `  x
)  =  (/) )
74 df-1o 7560 . . . . . . . . . . . . . . . 16  |-  1o  =  suc  (/)
75 df-2o 7561 . . . . . . . . . . . . . . . 16  |-  2o  =  suc  1o
7674, 75eqeq12i 2636 . . . . . . . . . . . . . . 15  |-  ( 1o  =  2o  <->  suc  (/)  =  suc  1o )
77 0elon 5778 . . . . . . . . . . . . . . . 16  |-  (/)  e.  On
78 suc11 5831 . . . . . . . . . . . . . . . 16  |-  ( (
(/)  e.  On  /\  1o  e.  On )  ->  ( suc  (/)  =  suc  1o  <->  (/)  =  1o ) )
7977, 41, 78mp2an 708 . . . . . . . . . . . . . . 15  |-  ( suc  (/)  =  suc  1o  <->  (/)  =  1o )
8076, 79bitri 264 . . . . . . . . . . . . . 14  |-  ( 1o  =  2o  <->  (/)  =  1o )
8144, 80nemtbir 2889 . . . . . . . . . . . . 13  |-  -.  1o  =  2o
82 eqtr2 2642 . . . . . . . . . . . . 13  |-  ( ( ( ( A  |`  X ) `  x
)  =  1o  /\  ( ( A  |`  X ) `  x
)  =  2o )  ->  1o  =  2o )
8381, 82mto 188 . . . . . . . . . . . 12  |-  -.  (
( ( A  |`  X ) `  x
)  =  1o  /\  ( ( A  |`  X ) `  x
)  =  2o )
84 2on 7568 . . . . . . . . . . . . . . . . 17  |-  2o  e.  On
8584elexi 3213 . . . . . . . . . . . . . . . 16  |-  2o  e.  _V
8685prid2 4298 . . . . . . . . . . . . . . 15  |-  2o  e.  { 1o ,  2o }
8786nosgnn0i 31812 . . . . . . . . . . . . . 14  |-  (/)  =/=  2o
8887neii 2796 . . . . . . . . . . . . 13  |-  -.  (/)  =  2o
89 eqtr2 2642 . . . . . . . . . . . . 13  |-  ( ( ( ( A  |`  X ) `  x
)  =  (/)  /\  (
( A  |`  X ) `
 x )  =  2o )  ->  (/)  =  2o )
9088, 89mto 188 . . . . . . . . . . . 12  |-  -.  (
( ( A  |`  X ) `  x
)  =  (/)  /\  (
( A  |`  X ) `
 x )  =  2o )
9173, 83, 903pm3.2i 1239 . . . . . . . . . . 11  |-  ( -.  ( ( ( A  |`  X ) `  x
)  =  1o  /\  ( ( A  |`  X ) `  x
)  =  (/) )  /\  -.  ( ( ( A  |`  X ) `  x
)  =  1o  /\  ( ( A  |`  X ) `  x
)  =  2o )  /\  -.  ( ( ( A  |`  X ) `
 x )  =  (/)  /\  ( ( A  |`  X ) `  x
)  =  2o ) )
92 fvex 6201 . . . . . . . . . . . . . 14  |-  ( ( A  |`  X ) `  x )  e.  _V
9392, 92brtp 31639 . . . . . . . . . . . . 13  |-  ( ( ( A  |`  X ) `
 x ) {
<. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/)
,  2o >. }  (
( A  |`  X ) `
 x )  <->  ( (
( ( A  |`  X ) `  x
)  =  1o  /\  ( ( A  |`  X ) `  x
)  =  (/) )  \/  ( ( ( A  |`  X ) `  x
)  =  1o  /\  ( ( A  |`  X ) `  x
)  =  2o )  \/  ( ( ( A  |`  X ) `  x )  =  (/)  /\  ( ( A  |`  X ) `  x
)  =  2o ) ) )
94 3oran 1057 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  |`  X ) `  x
)  =  1o  /\  ( ( A  |`  X ) `  x
)  =  (/) )  \/  ( ( ( A  |`  X ) `  x
)  =  1o  /\  ( ( A  |`  X ) `  x
)  =  2o )  \/  ( ( ( A  |`  X ) `  x )  =  (/)  /\  ( ( A  |`  X ) `  x
)  =  2o ) )  <->  -.  ( -.  ( ( ( A  |`  X ) `  x
)  =  1o  /\  ( ( A  |`  X ) `  x
)  =  (/) )  /\  -.  ( ( ( A  |`  X ) `  x
)  =  1o  /\  ( ( A  |`  X ) `  x
)  =  2o )  /\  -.  ( ( ( A  |`  X ) `
 x )  =  (/)  /\  ( ( A  |`  X ) `  x
)  =  2o ) ) )
9593, 94bitri 264 . . . . . . . . . . . 12  |-  ( ( ( A  |`  X ) `
 x ) {
<. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/)
,  2o >. }  (
( A  |`  X ) `
 x )  <->  -.  ( -.  ( ( ( A  |`  X ) `  x
)  =  1o  /\  ( ( A  |`  X ) `  x
)  =  (/) )  /\  -.  ( ( ( A  |`  X ) `  x
)  =  1o  /\  ( ( A  |`  X ) `  x
)  =  2o )  /\  -.  ( ( ( A  |`  X ) `
 x )  =  (/)  /\  ( ( A  |`  X ) `  x
)  =  2o ) ) )
9695con2bii 347 . . . . . . . . . . 11  |-  ( ( -.  ( ( ( A  |`  X ) `  x )  =  1o 
/\  ( ( A  |`  X ) `  x
)  =  (/) )  /\  -.  ( ( ( A  |`  X ) `  x
)  =  1o  /\  ( ( A  |`  X ) `  x
)  =  2o )  /\  -.  ( ( ( A  |`  X ) `
 x )  =  (/)  /\  ( ( A  |`  X ) `  x
)  =  2o ) )  <->  -.  ( ( A  |`  X ) `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( ( A  |`  X ) `  x
) )
9791, 96mpbi 220 . . . . . . . . . 10  |-  -.  (
( A  |`  X ) `
 x ) {
<. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/)
,  2o >. }  (
( A  |`  X ) `
 x )
98 simpl2l 1114 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  (
( A  |`  X )  =  ( B  |`  X )  /\  A <s B )  /\  ( A `  X )  =  (/) )  /\  ( B `  X )  =  1o )  ->  ( A  |`  X )  =  ( B  |`  X ) )
9998adantr 481 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  (
( A  |`  X )  =  ( B  |`  X )  /\  A <s B )  /\  ( A `  X )  =  (/) )  /\  ( B `  X )  =  1o )  /\  (
x  e.  On  /\  A. y  e.  x  ( A `  y )  =  ( B `  y ) ) )  ->  ( A  |`  X )  =  ( B  |`  X )
)
10099fveq1d 6193 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  (
( A  |`  X )  =  ( B  |`  X )  /\  A <s B )  /\  ( A `  X )  =  (/) )  /\  ( B `  X )  =  1o )  /\  (
x  e.  On  /\  A. y  e.  x  ( A `  y )  =  ( B `  y ) ) )  ->  ( ( A  |`  X ) `  x
)  =  ( ( B  |`  X ) `  x ) )
101100breq2d 4665 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  (
( A  |`  X )  =  ( B  |`  X )  /\  A <s B )  /\  ( A `  X )  =  (/) )  /\  ( B `  X )  =  1o )  /\  (
x  e.  On  /\  A. y  e.  x  ( A `  y )  =  ( B `  y ) ) )  ->  ( ( ( A  |`  X ) `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( ( A  |`  X ) `  x
)  <->  ( ( A  |`  X ) `  x
) { <. 1o ,  (/)
>. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( ( B  |`  X ) `  x
) ) )
10297, 101mtbii 316 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  (
( A  |`  X )  =  ( B  |`  X )  /\  A <s B )  /\  ( A `  X )  =  (/) )  /\  ( B `  X )  =  1o )  /\  (
x  e.  On  /\  A. y  e.  x  ( A `  y )  =  ( B `  y ) ) )  ->  -.  ( ( A  |`  X ) `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( ( B  |`  X ) `  x
) )
103 fvres 6207 . . . . . . . . . . 11  |-  ( x  e.  X  ->  (
( A  |`  X ) `
 x )  =  ( A `  x
) )
104 fvres 6207 . . . . . . . . . . 11  |-  ( x  e.  X  ->  (
( B  |`  X ) `
 x )  =  ( B `  x
) )
105103, 104breq12d 4666 . . . . . . . . . 10  |-  ( x  e.  X  ->  (
( ( A  |`  X ) `  x
) { <. 1o ,  (/)
>. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( ( B  |`  X ) `  x
)  <->  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x ) ) )
106105notbid 308 . . . . . . . . 9  |-  ( x  e.  X  ->  ( -.  ( ( A  |`  X ) `  x
) { <. 1o ,  (/)
>. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( ( B  |`  X ) `  x
)  <->  -.  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x ) ) )
107102, 106syl5ibcom 235 . . . . . . . 8  |-  ( ( ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  (
( A  |`  X )  =  ( B  |`  X )  /\  A <s B )  /\  ( A `  X )  =  (/) )  /\  ( B `  X )  =  1o )  /\  (
x  e.  On  /\  A. y  e.  x  ( A `  y )  =  ( B `  y ) ) )  ->  ( x  e.  X  ->  -.  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x
) ) )
10845intnanr 961 . . . . . . . . . . . 12  |-  -.  ( (/)  =  1o  /\  1o  =  (/) )
10945intnanr 961 . . . . . . . . . . . 12  |-  -.  ( (/)  =  1o  /\  1o  =  2o )
11081intnan 960 . . . . . . . . . . . 12  |-  -.  ( (/)  =  (/)  /\  1o  =  2o )
111108, 109, 1103pm3.2i 1239 . . . . . . . . . . 11  |-  ( -.  ( (/)  =  1o  /\  1o  =  (/) )  /\  -.  ( (/)  =  1o  /\  1o  =  2o )  /\  -.  ( (/)  =  (/)  /\  1o  =  2o ) )
112 0ex 4790 . . . . . . . . . . . . . 14  |-  (/)  e.  _V
113112, 42brtp 31639 . . . . . . . . . . . . 13  |-  ( (/) {
<. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/)
,  2o >. } 1o  <->  ( ( (/)  =  1o  /\  1o  =  (/) )  \/  ( (/)  =  1o  /\  1o  =  2o )  \/  ( (/)  =  (/)  /\  1o  =  2o ) ) )
114 3oran 1057 . . . . . . . . . . . . 13  |-  ( ( ( (/)  =  1o  /\  1o  =  (/) )  \/  ( (/)  =  1o  /\  1o  =  2o )  \/  ( (/)  =  (/)  /\  1o  =  2o ) )  <->  -.  ( -.  ( (/)  =  1o  /\  1o  =  (/) )  /\  -.  ( (/)  =  1o  /\  1o  =  2o )  /\  -.  ( (/)  =  (/)  /\  1o  =  2o ) ) )
115113, 114bitri 264 . . . . . . . . . . . 12  |-  ( (/) {
<. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/)
,  2o >. } 1o  <->  -.  ( -.  ( (/)  =  1o  /\  1o  =  (/) )  /\  -.  ( (/)  =  1o  /\  1o  =  2o )  /\  -.  ( (/)  =  (/)  /\  1o  =  2o ) ) )
116115con2bii 347 . . . . . . . . . . 11  |-  ( ( -.  ( (/)  =  1o 
/\  1o  =  (/) )  /\  -.  ( (/)  =  1o  /\  1o  =  2o )  /\  -.  ( (/)  =  (/)  /\  1o  =  2o ) )  <->  -.  (/) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } 1o )
117111, 116mpbi 220 . . . . . . . . . 10  |-  -.  (/) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. } 1o
11846, 47breq12d 4666 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  (
( A  |`  X )  =  ( B  |`  X )  /\  A <s B )  /\  ( A `  X )  =  (/) )  /\  ( B `  X )  =  1o )  /\  (
x  e.  On  /\  A. y  e.  x  ( A `  y )  =  ( B `  y ) ) )  ->  ( ( A `
 X ) {
<. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/)
,  2o >. }  ( B `  X )  <->  (/) {
<. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/)
,  2o >. } 1o ) )
119117, 118mtbiri 317 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  (
( A  |`  X )  =  ( B  |`  X )  /\  A <s B )  /\  ( A `  X )  =  (/) )  /\  ( B `  X )  =  1o )  /\  (
x  e.  On  /\  A. y  e.  x  ( A `  y )  =  ( B `  y ) ) )  ->  -.  ( A `  X ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  X ) )
120 fveq2 6191 . . . . . . . . . . 11  |-  ( x  =  X  ->  ( A `  x )  =  ( A `  X ) )
121 fveq2 6191 . . . . . . . . . . 11  |-  ( x  =  X  ->  ( B `  x )  =  ( B `  X ) )
122120, 121breq12d 4666 . . . . . . . . . 10  |-  ( x  =  X  ->  (
( A `  x
) { <. 1o ,  (/)
>. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x )  <->  ( A `  X ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  X ) ) )
123122notbid 308 . . . . . . . . 9  |-  ( x  =  X  ->  ( -.  ( A `  x
) { <. 1o ,  (/)
>. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x )  <->  -.  ( A `  X ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  X
) ) )
124119, 123syl5ibrcom 237 . . . . . . . 8  |-  ( ( ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  (
( A  |`  X )  =  ( B  |`  X )  /\  A <s B )  /\  ( A `  X )  =  (/) )  /\  ( B `  X )  =  1o )  /\  (
x  e.  On  /\  A. y  e.  x  ( A `  y )  =  ( B `  y ) ) )  ->  ( x  =  X  ->  -.  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x
) ) )
125107, 124jaod 395 . . . . . . 7  |-  ( ( ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  (
( A  |`  X )  =  ( B  |`  X )  /\  A <s B )  /\  ( A `  X )  =  (/) )  /\  ( B `  X )  =  1o )  /\  (
x  e.  On  /\  A. y  e.  x  ( A `  y )  =  ( B `  y ) ) )  ->  ( ( x  e.  X  \/  x  =  X )  ->  -.  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x
) ) )
12670, 125sylbid 230 . . . . . 6  |-  ( ( ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  (
( A  |`  X )  =  ( B  |`  X )  /\  A <s B )  /\  ( A `  X )  =  (/) )  /\  ( B `  X )  =  1o )  /\  (
x  e.  On  /\  A. y  e.  x  ( A `  y )  =  ( B `  y ) ) )  ->  ( x  C_  X  ->  -.  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x ) ) )
12768, 126mpd 15 . . . . 5  |-  ( ( ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  (
( A  |`  X )  =  ( B  |`  X )  /\  A <s B )  /\  ( A `  X )  =  (/) )  /\  ( B `  X )  =  1o )  /\  (
x  e.  On  /\  A. y  e.  x  ( A `  y )  =  ( B `  y ) ) )  ->  -.  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x ) )
128127expr 643 . . . 4  |-  ( ( ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  (
( A  |`  X )  =  ( B  |`  X )  /\  A <s B )  /\  ( A `  X )  =  (/) )  /\  ( B `  X )  =  1o )  /\  x  e.  On )  ->  ( A. y  e.  x  ( A `  y )  =  ( B `  y )  ->  -.  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x
) ) )
129128ralrimiva 2966 . . 3  |-  ( ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  (
( A  |`  X )  =  ( B  |`  X )  /\  A <s B )  /\  ( A `  X )  =  (/) )  /\  ( B `  X )  =  1o )  ->  A. x  e.  On  ( A. y  e.  x  ( A `  y )  =  ( B `  y )  ->  -.  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x ) ) )
13040, 129mtand 691 . 2  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  A <s B )  /\  ( A `
 X )  =  (/) )  ->  -.  ( B `  X )  =  1o )
131 nofv 31810 . . . 4  |-  ( B  e.  No  ->  (
( B `  X
)  =  (/)  \/  ( B `  X )  =  1o  \/  ( B `  X )  =  2o ) )
13232, 131syl 17 . . 3  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  A <s B )  /\  ( A `
 X )  =  (/) )  ->  ( ( B `  X )  =  (/)  \/  ( B `  X )  =  1o  \/  ( B `  X )  =  2o ) )
133 3orrot 1044 . . . 4  |-  ( ( ( B `  X
)  =  (/)  \/  ( B `  X )  =  1o  \/  ( B `  X )  =  2o )  <->  ( ( B `  X )  =  1o  \/  ( B `  X )  =  2o  \/  ( B `  X )  =  (/) ) )
134 3orrot 1044 . . . 4  |-  ( ( ( B `  X
)  =  1o  \/  ( B `  X )  =  2o  \/  ( B `  X )  =  (/) )  <->  ( ( B `  X )  =  2o  \/  ( B `  X )  =  (/)  \/  ( B `
 X )  =  1o ) )
135133, 134bitri 264 . . 3  |-  ( ( ( B `  X
)  =  (/)  \/  ( B `  X )  =  1o  \/  ( B `  X )  =  2o )  <->  ( ( B `  X )  =  2o  \/  ( B `  X )  =  (/)  \/  ( B `
 X )  =  1o ) )
136132, 135sylib 208 . 2  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  A <s B )  /\  ( A `
 X )  =  (/) )  ->  ( ( B `  X )  =  2o  \/  ( B `  X )  =  (/)  \/  ( B `
 X )  =  1o ) )
13731, 130, 136ecase23d 1436 1  |-  ( ( ( A  e.  No  /\  B  e.  No  /\  X  e.  On )  /\  ( ( A  |`  X )  =  ( B  |`  X )  /\  A <s B )  /\  ( A `
 X )  =  (/) )  ->  ( B `
 X )  =  2o )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    \/ w3o 1036    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    C_ wss 3574   (/)c0 3915   {ctp 4181   <.cop 4183   class class class wbr 4653    Or wor 5034   dom cdm 5114    |` cres 5116   Rel wrel 5119   Oncon0 5723   suc csuc 5725   Fun wfun 5882   ` cfv 5888   1oc1o 7553   2oc2o 7554   Nocsur 31793   <scslt 31794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-1o 7560  df-2o 7561  df-no 31796  df-slt 31797
This theorem is referenced by:  nosupbnd1lem4  31857
  Copyright terms: Public domain W3C validator