Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nodense Structured version   Visualization version   Unicode version

Theorem nodense 31842
Description: Given two distinct surreals with the same birthday, there is an older surreal lying between the two of them. Alling's axiom (SD). (Contributed by Scott Fenton, 16-Jun-2011.)
Assertion
Ref Expression
nodense  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( ( bday `  A )  =  (
bday `  B )  /\  A <s B ) )  ->  E. x  e.  No  ( ( bday `  x )  e.  (
bday `  A )  /\  A <s x  /\  x <s
B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem nodense
Dummy variables  a 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nodenselem6 31839 . 2  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( ( bday `  A )  =  (
bday `  B )  /\  A <s B ) )  ->  ( A  |`  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )  e.  No )
2 bdayval 31801 . . . . 5  |-  ( ( A  |`  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  e.  No  ->  ( bday `  ( A  |`  |^|
{ a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) )  =  dom  ( A  |`  |^|
{ a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) )
31, 2syl 17 . . . 4  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( ( bday `  A )  =  (
bday `  B )  /\  A <s B ) )  ->  ( bday `  ( A  |`  |^|
{ a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) )  =  dom  ( A  |`  |^|
{ a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) )
4 dmres 5419 . . . . 5  |-  dom  ( A  |`  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )  =  ( |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  i^i  dom 
A )
5 nodenselem5 31838 . . . . . . . 8  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( ( bday `  A )  =  (
bday `  B )  /\  A <s B ) )  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  ( bday `  A )
)
6 bdayfo 31828 . . . . . . . . . . 11  |-  bday : No -onto-> On
7 fof 6115 . . . . . . . . . . 11  |-  ( bday
: No -onto-> On  ->  bday
: No --> On )
86, 7ax-mp 5 . . . . . . . . . 10  |-  bday : No --> On
9 0elon 5778 . . . . . . . . . 10  |-  (/)  e.  On
108, 9f0cli 6370 . . . . . . . . 9  |-  ( bday `  A )  e.  On
1110onelssi 5836 . . . . . . . 8  |-  ( |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) }  e.  ( bday `  A
)  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  C_  ( bday `  A )
)
125, 11syl 17 . . . . . . 7  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( ( bday `  A )  =  (
bday `  B )  /\  A <s B ) )  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  C_  ( bday `  A )
)
13 bdayval 31801 . . . . . . . 8  |-  ( A  e.  No  ->  ( bday `  A )  =  dom  A )
1413ad2antrr 762 . . . . . . 7  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( ( bday `  A )  =  (
bday `  B )  /\  A <s B ) )  ->  ( bday `  A )  =  dom  A )
1512, 14sseqtrd 3641 . . . . . 6  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( ( bday `  A )  =  (
bday `  B )  /\  A <s B ) )  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  C_  dom  A )
16 df-ss 3588 . . . . . 6  |-  ( |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } 
C_  dom  A  <->  ( |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) }  i^i  dom  A )  =  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )
1715, 16sylib 208 . . . . 5  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( ( bday `  A )  =  (
bday `  B )  /\  A <s B ) )  ->  ( |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  i^i  dom  A )  =  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )
184, 17syl5eq 2668 . . . 4  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( ( bday `  A )  =  (
bday `  B )  /\  A <s B ) )  ->  dom  ( A  |`  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )
193, 18eqtrd 2656 . . 3  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( ( bday `  A )  =  (
bday `  B )  /\  A <s B ) )  ->  ( bday `  ( A  |`  |^|
{ a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) )  = 
|^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )
2019, 5eqeltrd 2701 . 2  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( ( bday `  A )  =  (
bday `  B )  /\  A <s B ) )  ->  ( bday `  ( A  |`  |^|
{ a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) )  e.  ( bday `  A
) )
21 nodenselem4 31837 . . . . 5  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  A <s
B )  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  On )
2221adantrl 752 . . . 4  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( ( bday `  A )  =  (
bday `  B )  /\  A <s B ) )  ->  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  On )
23 nodenselem8 31841 . . . . . . . . . . . . 13  |-  ( ( A  e.  No  /\  B  e.  No  /\  ( bday `  A )  =  ( bday `  B
) )  ->  ( A <s B  <->  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  1o  /\  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  2o ) ) )
2423biimpd 219 . . . . . . . . . . . 12  |-  ( ( A  e.  No  /\  B  e.  No  /\  ( bday `  A )  =  ( bday `  B
) )  ->  ( A <s B  -> 
( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  1o 
/\  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  2o ) ) )
25243expia 1267 . . . . . . . . . . 11  |-  ( ( A  e.  No  /\  B  e.  No )  ->  ( ( bday `  A
)  =  ( bday `  B )  ->  ( A <s B  -> 
( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  1o 
/\  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  2o ) ) ) )
2625imp32 449 . . . . . . . . . 10  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( ( bday `  A )  =  (
bday `  B )  /\  A <s B ) )  ->  (
( A `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =  1o  /\  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  2o ) )
2726simpld 475 . . . . . . . . 9  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( ( bday `  A )  =  (
bday `  B )  /\  A <s B ) )  ->  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  1o )
28 eqid 2622 . . . . . . . . 9  |-  (/)  =  (/)
2927, 28jctir 561 . . . . . . . 8  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( ( bday `  A )  =  (
bday `  B )  /\  A <s B ) )  ->  (
( A `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } )  =  1o  /\  (/)  =  (/) ) )
30293mix1d 1236 . . . . . . 7  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( ( bday `  A )  =  (
bday `  B )  /\  A <s B ) )  ->  (
( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  1o 
/\  (/)  =  (/) )  \/  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  1o 
/\  (/)  =  2o )  \/  ( ( A `
 |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )  =  (/)  /\  (/)  =  2o ) ) )
31 fvex 6201 . . . . . . . 8  |-  ( A `
 |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )  e. 
_V
32 0ex 4790 . . . . . . . 8  |-  (/)  e.  _V
3331, 32brtp 31639 . . . . . . 7  |-  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }
(/) 
<->  ( ( ( A `
 |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )  =  1o  /\  (/)  =  (/) )  \/  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  1o  /\  (/)  =  2o )  \/  ( ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/)  /\  (/)  =  2o ) ) )
3430, 33sylibr 224 . . . . . 6  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( ( bday `  A )  =  (
bday `  B )  /\  A <s B ) )  ->  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }
(/) )
3519fveq2d 6195 . . . . . . 7  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( ( bday `  A )  =  (
bday `  B )  /\  A <s B ) )  ->  (
( A  |`  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) `
 ( bday `  ( A  |`  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } ) ) )  =  ( ( A  |`  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) `
 |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } ) )
36 fvnobday 31829 . . . . . . . 8  |-  ( ( A  |`  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  e.  No  ->  (
( A  |`  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) `
 ( bday `  ( A  |`  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } ) ) )  =  (/) )
371, 36syl 17 . . . . . . 7  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( ( bday `  A )  =  (
bday `  B )  /\  A <s B ) )  ->  (
( A  |`  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) `
 ( bday `  ( A  |`  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } ) ) )  =  (/) )
3835, 37eqtr3d 2658 . . . . . 6  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( ( bday `  A )  =  (
bday `  B )  /\  A <s B ) )  ->  (
( A  |`  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) `
 |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )  =  (/) )
3934, 38breqtrrd 4681 . . . . 5  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( ( bday `  A )  =  (
bday `  B )  /\  A <s B ) )  ->  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( ( A  |`  |^|
{ a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } ) )
40 fvres 6207 . . . . . . 7  |-  ( y  e.  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) }  ->  (
( A  |`  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) `
 y )  =  ( A `  y
) )
4140eqcomd 2628 . . . . . 6  |-  ( y  e.  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) }  ->  ( A `  y )  =  ( ( A  |`  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } ) `  y ) )
4241rgen 2922 . . . . 5  |-  A. y  e.  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) }  ( A `
 y )  =  ( ( A  |`  |^|
{ a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) `  y
)
4339, 42jctil 560 . . . 4  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( ( bday `  A )  =  (
bday `  B )  /\  A <s B ) )  ->  ( A. y  e.  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ( A `  y )  =  ( ( A  |`  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } ) `  y )  /\  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( ( A  |`  |^|
{ a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } ) ) )
44 raleq 3138 . . . . . 6  |-  ( x  =  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ->  ( A. y  e.  x  ( A `  y )  =  ( ( A  |`  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } ) `  y )  <->  A. y  e.  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) }  ( A `
 y )  =  ( ( A  |`  |^|
{ a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) `  y
) ) )
45 fveq2 6191 . . . . . . 7  |-  ( x  =  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ->  ( A `  x )  =  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) )
46 fveq2 6191 . . . . . . 7  |-  ( x  =  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ->  ( ( A  |`  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) `
 x )  =  ( ( A  |`  |^|
{ a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } ) )
4745, 46breq12d 4666 . . . . . 6  |-  ( x  =  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ->  ( ( A `  x
) { <. 1o ,  (/)
>. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( ( A  |`  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } ) `  x )  <->  ( A `  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } ) {
<. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/)
,  2o >. }  (
( A  |`  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) `
 |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } ) ) )
4844, 47anbi12d 747 . . . . 5  |-  ( x  =  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ->  ( ( A. y  e.  x  ( A `  y )  =  ( ( A  |`  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) `
 y )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( ( A  |`  |^|
{ a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) `  x
) )  <->  ( A. y  e.  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ( A `  y )  =  ( ( A  |`  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } ) `  y )  /\  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( ( A  |`  |^|
{ a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } ) ) ) )
4948rspcev 3309 . . . 4  |-  ( (
|^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  On  /\  ( A. y  e.  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ( A `  y )  =  ( ( A  |`  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } ) `  y )  /\  ( A `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( ( A  |`  |^|
{ a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) `  |^| { a  e.  On  | 
( A `  a
)  =/=  ( B `
 a ) } ) ) )  ->  E. x  e.  On  ( A. y  e.  x  ( A `  y )  =  ( ( A  |`  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } ) `  y )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( ( A  |`  |^|
{ a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) `  x
) ) )
5022, 43, 49syl2anc 693 . . 3  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( ( bday `  A )  =  (
bday `  B )  /\  A <s B ) )  ->  E. x  e.  On  ( A. y  e.  x  ( A `  y )  =  ( ( A  |`  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) `
 y )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( ( A  |`  |^|
{ a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) `  x
) ) )
51 simpll 790 . . . 4  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( ( bday `  A )  =  (
bday `  B )  /\  A <s B ) )  ->  A  e.  No )
52 sltval 31800 . . . 4  |-  ( ( A  e.  No  /\  ( A  |`  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  e.  No )  -> 
( A <s
( A  |`  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  <->  E. x  e.  On  ( A. y  e.  x  ( A `  y )  =  ( ( A  |`  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } ) `  y )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( ( A  |`  |^|
{ a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) `  x
) ) ) )
5351, 1, 52syl2anc 693 . . 3  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( ( bday `  A )  =  (
bday `  B )  /\  A <s B ) )  ->  ( A <s ( A  |`  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )  <->  E. x  e.  On  ( A. y  e.  x  ( A `  y )  =  ( ( A  |`  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) `
 y )  /\  ( A `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( ( A  |`  |^|
{ a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) `  x
) ) ) )
5450, 53mpbird 247 . 2  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( ( bday `  A )  =  (
bday `  B )  /\  A <s B ) )  ->  A <s ( A  |`  |^|
{ a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) )
5541adantl 482 . . . . . 6  |-  ( ( ( ( A  e.  No  /\  B  e.  No )  /\  (
( bday `  A )  =  ( bday `  B
)  /\  A <s B ) )  /\  y  e.  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  ->  ( A `  y )  =  ( ( A  |`  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) `
 y ) )
56 nodenselem7 31840 . . . . . . 7  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( ( bday `  A )  =  (
bday `  B )  /\  A <s B ) )  ->  (
y  e.  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ->  ( A `  y )  =  ( B `  y ) ) )
5756imp 445 . . . . . 6  |-  ( ( ( ( A  e.  No  /\  B  e.  No )  /\  (
( bday `  A )  =  ( bday `  B
)  /\  A <s B ) )  /\  y  e.  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  ->  ( A `  y )  =  ( B `  y ) )
5855, 57eqtr3d 2658 . . . . 5  |-  ( ( ( ( A  e.  No  /\  B  e.  No )  /\  (
( bday `  A )  =  ( bday `  B
)  /\  A <s B ) )  /\  y  e.  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  ->  ( ( A  |`  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } ) `  y )  =  ( B `  y ) )
5958ralrimiva 2966 . . . 4  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( ( bday `  A )  =  (
bday `  B )  /\  A <s B ) )  ->  A. y  e.  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) }  ( ( A  |`  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) `
 y )  =  ( B `  y
) )
6026simprd 479 . . . . . . . 8  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( ( bday `  A )  =  (
bday `  B )  /\  A <s B ) )  ->  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  2o )
6160, 28jctil 560 . . . . . . 7  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( ( bday `  A )  =  (
bday `  B )  /\  A <s B ) )  ->  ( (/)  =  (/)  /\  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  2o ) )
62613mix3d 1238 . . . . . 6  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( ( bday `  A )  =  (
bday `  B )  /\  A <s B ) )  ->  (
( (/)  =  1o  /\  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/) )  \/  ( (/)  =  1o  /\  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  2o )  \/  ( (/)  =  (/)  /\  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  2o ) ) )
63 fvex 6201 . . . . . . 7  |-  ( B `
 |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )  e. 
_V
6432, 63brtp 31639 . . . . . 6  |-  ( (/) {
<. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/)
,  2o >. }  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  <-> 
( ( (/)  =  1o 
/\  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  (/) )  \/  ( (/)  =  1o 
/\  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  =  2o )  \/  ( (/)  =  (/)  /\  ( B `
 |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } )  =  2o ) ) )
6562, 64sylibr 224 . . . . 5  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( ( bday `  A )  =  (
bday `  B )  /\  A <s B ) )  ->  (/) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) )
6638, 65eqbrtrd 4675 . . . 4  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( ( bday `  A )  =  (
bday `  B )  /\  A <s B ) )  ->  (
( A  |`  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) `
 |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } ) {
<. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/)
,  2o >. }  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) )
67 raleq 3138 . . . . . 6  |-  ( x  =  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ->  ( A. y  e.  x  ( ( A  |`  |^|
{ a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) `  y
)  =  ( B `
 y )  <->  A. y  e.  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) }  ( ( A  |`  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) `
 y )  =  ( B `  y
) ) )
68 fveq2 6191 . . . . . . 7  |-  ( x  =  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ->  ( B `  x )  =  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) )
6946, 68breq12d 4666 . . . . . 6  |-  ( x  =  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ->  ( ( ( A  |`  |^|
{ a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) `  x
) { <. 1o ,  (/)
>. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x )  <->  ( ( A  |`  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } ) `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) ) )
7067, 69anbi12d 747 . . . . 5  |-  ( x  =  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  ->  ( ( A. y  e.  x  ( ( A  |`  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } ) `  y )  =  ( B `  y )  /\  ( ( A  |`  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } ) `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x ) )  <->  ( A. y  e.  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  (
( A  |`  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) `
 y )  =  ( B `  y
)  /\  ( ( A  |`  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } ) `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) ) ) )
7170rspcev 3309 . . . 4  |-  ( (
|^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  e.  On  /\  ( A. y  e.  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) }  (
( A  |`  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) `
 y )  =  ( B `  y
)  /\  ( ( A  |`  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } ) `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) ) )  ->  E. x  e.  On  ( A. y  e.  x  ( ( A  |`  |^|
{ a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) `  y
)  =  ( B `
 y )  /\  ( ( A  |`  |^|
{ a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) `  x
) { <. 1o ,  (/)
>. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x ) ) )
7222, 59, 66, 71syl12anc 1324 . . 3  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( ( bday `  A )  =  (
bday `  B )  /\  A <s B ) )  ->  E. x  e.  On  ( A. y  e.  x  ( ( A  |`  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } ) `  y )  =  ( B `  y )  /\  ( ( A  |`  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } ) `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x ) ) )
73 simplr 792 . . . 4  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( ( bday `  A )  =  (
bday `  B )  /\  A <s B ) )  ->  B  e.  No )
74 sltval 31800 . . . 4  |-  ( ( ( A  |`  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  e.  No  /\  B  e.  No )  ->  (
( A  |`  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) <s B  <->  E. x  e.  On  ( A. y  e.  x  ( ( A  |`  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } ) `  y )  =  ( B `  y )  /\  ( ( A  |`  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } ) `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x ) ) ) )
751, 73, 74syl2anc 693 . . 3  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( ( bday `  A )  =  (
bday `  B )  /\  A <s B ) )  ->  (
( A  |`  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) <s B  <->  E. x  e.  On  ( A. y  e.  x  ( ( A  |`  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } ) `  y )  =  ( B `  y )  /\  ( ( A  |`  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } ) `  x ) { <. 1o ,  (/) >. ,  <. 1o ,  2o >. ,  <. (/) ,  2o >. }  ( B `  x ) ) ) )
7672, 75mpbird 247 . 2  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( ( bday `  A )  =  (
bday `  B )  /\  A <s B ) )  ->  ( A  |`  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } ) <s B )
77 fveq2 6191 . . . . 5  |-  ( x  =  ( A  |`  |^|
{ a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  ->  ( bday `  x )  =  ( bday `  ( A  |`  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } ) ) )
7877eleq1d 2686 . . . 4  |-  ( x  =  ( A  |`  |^|
{ a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  ->  (
( bday `  x )  e.  ( bday `  A
)  <->  ( bday `  ( A  |`  |^| { a  e.  On  |  ( A `
 a )  =/=  ( B `  a
) } ) )  e.  ( bday `  A
) ) )
79 breq2 4657 . . . 4  |-  ( x  =  ( A  |`  |^|
{ a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  ->  ( A <s x  <->  A <s ( A  |`  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) ) )
80 breq1 4656 . . . 4  |-  ( x  =  ( A  |`  |^|
{ a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  ->  (
x <s B  <-> 
( A  |`  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) <s B ) )
8178, 79, 803anbi123d 1399 . . 3  |-  ( x  =  ( A  |`  |^|
{ a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  ->  (
( ( bday `  x
)  e.  ( bday `  A )  /\  A <s x  /\  x <s B )  <->  ( ( bday `  ( A  |`  |^|
{ a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) )  e.  ( bday `  A
)  /\  A <s ( A  |`  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  /\  ( A  |`  |^|
{ a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) <s
B ) ) )
8281rspcev 3309 . 2  |-  ( ( ( A  |`  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  e.  No  /\  (
( bday `  ( A  |` 
|^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) )  e.  ( bday `  A
)  /\  A <s ( A  |`  |^| { a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } )  /\  ( A  |`  |^|
{ a  e.  On  |  ( A `  a )  =/=  ( B `  a ) } ) <s
B ) )  ->  E. x  e.  No  ( ( bday `  x
)  e.  ( bday `  A )  /\  A <s x  /\  x <s B ) )
831, 20, 54, 76, 82syl13anc 1328 1  |-  ( ( ( A  e.  No  /\  B  e.  No )  /\  ( ( bday `  A )  =  (
bday `  B )  /\  A <s B ) )  ->  E. x  e.  No  ( ( bday `  x )  e.  (
bday `  A )  /\  A <s x  /\  x <s
B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    \/ w3o 1036    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916    i^i cin 3573    C_ wss 3574   (/)c0 3915   {ctp 4181   <.cop 4183   |^|cint 4475   class class class wbr 4653   dom cdm 5114    |` cres 5116   Oncon0 5723   -->wf 5884   -onto->wfo 5886   ` cfv 5888   1oc1o 7553   2oc2o 7554   Nocsur 31793   <scslt 31794   bdaycbday 31795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-1o 7560  df-2o 7561  df-no 31796  df-slt 31797  df-bday 31798
This theorem is referenced by:  nocvxminlem  31893
  Copyright terms: Public domain W3C validator