| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > smoiso | Structured version Visualization version Unicode version | ||
| Description: If |
| Ref | Expression |
|---|---|
| smoiso |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isof1o 6573 |
. . . 4
| |
| 2 | f1of 6137 |
. . . 4
| |
| 3 | 1, 2 | syl 17 |
. . 3
|
| 4 | ffdm 6062 |
. . . . . 6
| |
| 5 | 4 | simpld 475 |
. . . . 5
|
| 6 | fss 6056 |
. . . . 5
| |
| 7 | 5, 6 | sylan 488 |
. . . 4
|
| 8 | 7 | 3adant2 1080 |
. . 3
|
| 9 | 3, 8 | syl3an1 1359 |
. 2
|
| 10 | fdm 6051 |
. . . . . 6
| |
| 11 | 10 | eqcomd 2628 |
. . . . 5
|
| 12 | ordeq 5730 |
. . . . 5
| |
| 13 | 1, 2, 11, 12 | 4syl 19 |
. . . 4
|
| 14 | 13 | biimpa 501 |
. . 3
|
| 15 | 14 | 3adant3 1081 |
. 2
|
| 16 | 10 | eleq2d 2687 |
. . . . . . 7
|
| 17 | 10 | eleq2d 2687 |
. . . . . . 7
|
| 18 | 16, 17 | anbi12d 747 |
. . . . . 6
|
| 19 | 1, 2, 18 | 3syl 18 |
. . . . 5
|
| 20 | isorel 6576 |
. . . . . . . 8
| |
| 21 | epel 5032 |
. . . . . . . 8
| |
| 22 | fvex 6201 |
. . . . . . . . 9
| |
| 23 | 22 | epelc 5031 |
. . . . . . . 8
|
| 24 | 20, 21, 23 | 3bitr3g 302 |
. . . . . . 7
|
| 25 | 24 | biimpd 219 |
. . . . . 6
|
| 26 | 25 | ex 450 |
. . . . 5
|
| 27 | 19, 26 | sylbid 230 |
. . . 4
|
| 28 | 27 | ralrimivv 2970 |
. . 3
|
| 29 | 28 | 3ad2ant1 1082 |
. 2
|
| 30 | df-smo 7443 |
. 2
| |
| 31 | 9, 15, 29, 30 | syl3anbrc 1246 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-tr 4753 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-ord 5726 df-iota 5851 df-fn 5891 df-f 5892 df-f1 5893 df-f1o 5895 df-fv 5896 df-isom 5897 df-smo 7443 |
| This theorem is referenced by: smoiso2 7466 |
| Copyright terms: Public domain | W3C validator |