| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sotrieq | Structured version Visualization version Unicode version | ||
| Description: Trichotomy law for strict order relation. (Contributed by NM, 9-Apr-1996.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| sotrieq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sonr 5056 |
. . . . . . 7
| |
| 2 | 1 | adantrr 753 |
. . . . . 6
|
| 3 | pm1.2 535 |
. . . . . 6
| |
| 4 | 2, 3 | nsyl 135 |
. . . . 5
|
| 5 | breq2 4657 |
. . . . . . 7
| |
| 6 | breq1 4656 |
. . . . . . 7
| |
| 7 | 5, 6 | orbi12d 746 |
. . . . . 6
|
| 8 | 7 | notbid 308 |
. . . . 5
|
| 9 | 4, 8 | syl5ibcom 235 |
. . . 4
|
| 10 | 9 | con2d 129 |
. . 3
|
| 11 | solin 5058 |
. . . . . 6
| |
| 12 | 3orass 1040 |
. . . . . 6
| |
| 13 | 11, 12 | sylib 208 |
. . . . 5
|
| 14 | or12 545 |
. . . . 5
| |
| 15 | 13, 14 | sylib 208 |
. . . 4
|
| 16 | 15 | ord 392 |
. . 3
|
| 17 | 10, 16 | impbid 202 |
. 2
|
| 18 | 17 | con2bid 344 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-po 5035 df-so 5036 |
| This theorem is referenced by: sotrieq2 5063 sossfld 5580 soisores 6577 soisoi 6578 weniso 6604 wemapsolem 8455 distrlem4pr 9848 addcanpr 9868 sqgt0sr 9927 lttri2 10120 xrlttri2 11975 xrltne 11994 sotrine 31658 soseq 31751 |
| Copyright terms: Public domain | W3C validator |