MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sotrieq Structured version   Visualization version   Unicode version

Theorem sotrieq 5062
Description: Trichotomy law for strict order relation. (Contributed by NM, 9-Apr-1996.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
sotrieq  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  ( B  =  C  <->  -.  ( B R C  \/  C R B ) ) )

Proof of Theorem sotrieq
StepHypRef Expression
1 sonr 5056 . . . . . . 7  |-  ( ( R  Or  A  /\  B  e.  A )  ->  -.  B R B )
21adantrr 753 . . . . . 6  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  -.  B R B )
3 pm1.2 535 . . . . . 6  |-  ( ( B R B  \/  B R B )  ->  B R B )
42, 3nsyl 135 . . . . 5  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  -.  ( B R B  \/  B R B ) )
5 breq2 4657 . . . . . . 7  |-  ( B  =  C  ->  ( B R B  <->  B R C ) )
6 breq1 4656 . . . . . . 7  |-  ( B  =  C  ->  ( B R B  <->  C R B ) )
75, 6orbi12d 746 . . . . . 6  |-  ( B  =  C  ->  (
( B R B  \/  B R B )  <->  ( B R C  \/  C R B ) ) )
87notbid 308 . . . . 5  |-  ( B  =  C  ->  ( -.  ( B R B  \/  B R B )  <->  -.  ( B R C  \/  C R B ) ) )
94, 8syl5ibcom 235 . . . 4  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  ( B  =  C  ->  -.  ( B R C  \/  C R B ) ) )
109con2d 129 . . 3  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  (
( B R C  \/  C R B )  ->  -.  B  =  C ) )
11 solin 5058 . . . . . 6  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  ( B R C  \/  B  =  C  \/  C R B ) )
12 3orass 1040 . . . . . 6  |-  ( ( B R C  \/  B  =  C  \/  C R B )  <->  ( B R C  \/  ( B  =  C  \/  C R B ) ) )
1311, 12sylib 208 . . . . 5  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  ( B R C  \/  ( B  =  C  \/  C R B ) ) )
14 or12 545 . . . . 5  |-  ( ( B R C  \/  ( B  =  C  \/  C R B ) )  <->  ( B  =  C  \/  ( B R C  \/  C R B ) ) )
1513, 14sylib 208 . . . 4  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  ( B  =  C  \/  ( B R C  \/  C R B ) ) )
1615ord 392 . . 3  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  ( -.  B  =  C  ->  ( B R C  \/  C R B ) ) )
1710, 16impbid 202 . 2  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  (
( B R C  \/  C R B )  <->  -.  B  =  C ) )
1817con2bid 344 1  |-  ( ( R  Or  A  /\  ( B  e.  A  /\  C  e.  A
) )  ->  ( B  =  C  <->  -.  ( B R C  \/  C R B ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    \/ w3o 1036    = wceq 1483    e. wcel 1990   class class class wbr 4653    Or wor 5034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-po 5035  df-so 5036
This theorem is referenced by:  sotrieq2  5063  sossfld  5580  soisores  6577  soisoi  6578  weniso  6604  wemapsolem  8455  distrlem4pr  9848  addcanpr  9868  sqgt0sr  9927  lttri2  10120  xrlttri2  11975  xrltne  11994  sotrine  31658  soseq  31751
  Copyright terms: Public domain W3C validator