| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > distrlem4pr | Structured version Visualization version Unicode version | ||
| Description: Lemma for distributive law for positive reals. (Contributed by NM, 2-May-1996.) (Revised by Mario Carneiro, 14-Jun-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| distrlem4pr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl2 1065 |
. . . . 5
| |
| 2 | simprlr 803 |
. . . . 5
| |
| 3 | elprnq 9813 |
. . . . 5
| |
| 4 | 1, 2, 3 | syl2anc 693 |
. . . 4
|
| 5 | simp1 1061 |
. . . . 5
| |
| 6 | simprl 794 |
. . . . 5
| |
| 7 | elprnq 9813 |
. . . . 5
| |
| 8 | 5, 6, 7 | syl2an 494 |
. . . 4
|
| 9 | simpl3 1066 |
. . . . 5
| |
| 10 | simprrr 805 |
. . . . 5
| |
| 11 | elprnq 9813 |
. . . . 5
| |
| 12 | 9, 10, 11 | syl2anc 693 |
. . . 4
|
| 13 | vex 3203 |
. . . . . 6
| |
| 14 | vex 3203 |
. . . . . 6
| |
| 15 | ltmnq 9794 |
. . . . . 6
| |
| 16 | vex 3203 |
. . . . . 6
| |
| 17 | mulcomnq 9775 |
. . . . . 6
| |
| 18 | 13, 14, 15, 16, 17 | caovord2 6846 |
. . . . 5
|
| 19 | mulclnq 9769 |
. . . . . 6
| |
| 20 | ovex 6678 |
. . . . . . 7
| |
| 21 | ovex 6678 |
. . . . . . 7
| |
| 22 | ltanq 9793 |
. . . . . . 7
| |
| 23 | ovex 6678 |
. . . . . . 7
| |
| 24 | addcomnq 9773 |
. . . . . . 7
| |
| 25 | 20, 21, 22, 23, 24 | caovord2 6846 |
. . . . . 6
|
| 26 | 19, 25 | syl 17 |
. . . . 5
|
| 27 | 18, 26 | sylan9bb 736 |
. . . 4
|
| 28 | 4, 8, 12, 27 | syl12anc 1324 |
. . 3
|
| 29 | simpl1 1064 |
. . . . 5
| |
| 30 | addclpr 9840 |
. . . . . . 7
| |
| 31 | 30 | 3adant1 1079 |
. . . . . 6
|
| 32 | 31 | adantr 481 |
. . . . 5
|
| 33 | mulclpr 9842 |
. . . . 5
| |
| 34 | 29, 32, 33 | syl2anc 693 |
. . . 4
|
| 35 | distrnq 9783 |
. . . . 5
| |
| 36 | simprrl 804 |
. . . . . 6
| |
| 37 | df-plp 9805 |
. . . . . . . . 9
| |
| 38 | addclnq 9767 |
. . . . . . . . 9
| |
| 39 | 37, 38 | genpprecl 9823 |
. . . . . . . 8
|
| 40 | 39 | imp 445 |
. . . . . . 7
|
| 41 | 1, 9, 2, 10, 40 | syl22anc 1327 |
. . . . . 6
|
| 42 | df-mp 9806 |
. . . . . . . 8
| |
| 43 | mulclnq 9769 |
. . . . . . . 8
| |
| 44 | 42, 43 | genpprecl 9823 |
. . . . . . 7
|
| 45 | 44 | imp 445 |
. . . . . 6
|
| 46 | 29, 32, 36, 41, 45 | syl22anc 1327 |
. . . . 5
|
| 47 | 35, 46 | syl5eqelr 2706 |
. . . 4
|
| 48 | prcdnq 9815 |
. . . 4
| |
| 49 | 34, 47, 48 | syl2anc 693 |
. . 3
|
| 50 | 28, 49 | sylbid 230 |
. 2
|
| 51 | simpll 790 |
. . . . 5
| |
| 52 | elprnq 9813 |
. . . . 5
| |
| 53 | 5, 51, 52 | syl2an 494 |
. . . 4
|
| 54 | vex 3203 |
. . . . . 6
| |
| 55 | 14, 13, 15, 54, 17 | caovord2 6846 |
. . . . 5
|
| 56 | mulclnq 9769 |
. . . . . 6
| |
| 57 | ltanq 9793 |
. . . . . 6
| |
| 58 | 56, 57 | syl 17 |
. . . . 5
|
| 59 | 55, 58 | sylan9bbr 737 |
. . . 4
|
| 60 | 53, 4, 12, 59 | syl21anc 1325 |
. . 3
|
| 61 | distrnq 9783 |
. . . . 5
| |
| 62 | simprll 802 |
. . . . . 6
| |
| 63 | 42, 43 | genpprecl 9823 |
. . . . . . 7
|
| 64 | 63 | imp 445 |
. . . . . 6
|
| 65 | 29, 32, 62, 41, 64 | syl22anc 1327 |
. . . . 5
|
| 66 | 61, 65 | syl5eqelr 2706 |
. . . 4
|
| 67 | prcdnq 9815 |
. . . 4
| |
| 68 | 34, 66, 67 | syl2anc 693 |
. . 3
|
| 69 | 60, 68 | sylbid 230 |
. 2
|
| 70 | ltsonq 9791 |
. . . . 5
| |
| 71 | sotrieq 5062 |
. . . . 5
| |
| 72 | 70, 71 | mpan 706 |
. . . 4
|
| 73 | 53, 8, 72 | syl2anc 693 |
. . 3
|
| 74 | oveq1 6657 |
. . . . . . 7
| |
| 75 | 74 | oveq2d 6666 |
. . . . . 6
|
| 76 | 61, 75 | syl5eq 2668 |
. . . . 5
|
| 77 | 76 | eleq1d 2686 |
. . . 4
|
| 78 | 65, 77 | syl5ibcom 235 |
. . 3
|
| 79 | 73, 78 | sylbird 250 |
. 2
|
| 80 | 50, 69, 79 | ecase3d 984 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-omul 7565 df-er 7742 df-ni 9694 df-pli 9695 df-mi 9696 df-lti 9697 df-plpq 9730 df-mpq 9731 df-ltpq 9732 df-enq 9733 df-nq 9734 df-erq 9735 df-plq 9736 df-mq 9737 df-1nq 9738 df-rq 9739 df-ltnq 9740 df-np 9803 df-plp 9805 df-mp 9806 |
| This theorem is referenced by: distrlem5pr 9849 |
| Copyright terms: Public domain | W3C validator |