| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > supub | Structured version Visualization version Unicode version | ||
| Description: A supremum is an upper
bound. See also supcl 8364 and suplub 8366.
This proof demonstrates how to expand an iota-based definition (df-iota 5851) using riotacl2 6624. (Contributed by NM, 12-Oct-2004.) (Proof shortened by Mario Carneiro, 24-Dec-2016.) |
| Ref | Expression |
|---|---|
| supmo.1 |
|
| supcl.2 |
|
| Ref | Expression |
|---|---|
| supub |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 473 |
. . . . . 6
| |
| 2 | 1 | a1i 11 |
. . . . 5
|
| 3 | 2 | ss2rabi 3684 |
. . . 4
|
| 4 | supmo.1 |
. . . . . 6
| |
| 5 | 4 | supval2 8361 |
. . . . 5
|
| 6 | supcl.2 |
. . . . . . 7
| |
| 7 | 4, 6 | supeu 8360 |
. . . . . 6
|
| 8 | riotacl2 6624 |
. . . . . 6
| |
| 9 | 7, 8 | syl 17 |
. . . . 5
|
| 10 | 5, 9 | eqeltrd 2701 |
. . . 4
|
| 11 | 3, 10 | sseldi 3601 |
. . 3
|
| 12 | breq2 4657 |
. . . . . . . 8
| |
| 13 | 12 | notbid 308 |
. . . . . . 7
|
| 14 | 13 | cbvralv 3171 |
. . . . . 6
|
| 15 | breq1 4656 |
. . . . . . . 8
| |
| 16 | 15 | notbid 308 |
. . . . . . 7
|
| 17 | 16 | ralbidv 2986 |
. . . . . 6
|
| 18 | 14, 17 | syl5bb 272 |
. . . . 5
|
| 19 | 18 | elrab 3363 |
. . . 4
|
| 20 | 19 | simprbi 480 |
. . 3
|
| 21 | 11, 20 | syl 17 |
. 2
|
| 22 | breq2 4657 |
. . . 4
| |
| 23 | 22 | notbid 308 |
. . 3
|
| 24 | 23 | rspccv 3306 |
. 2
|
| 25 | 21, 24 | syl 17 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-po 5035 df-so 5036 df-iota 5851 df-riota 6611 df-sup 8348 |
| This theorem is referenced by: suplub2 8367 supgtoreq 8376 supiso 8381 inflb 8395 suprub 10984 suprzub 11779 supxrun 12146 supxrub 12154 dgrub 23990 supssd 29487 ssnnssfz 29549 oddpwdc 30416 itg2addnclem 33461 supubt 33534 ssnn0ssfz 42127 |
| Copyright terms: Public domain | W3C validator |