Step | Hyp | Ref
| Expression |
1 | | fvssunirn 6217 |
. . . 4
sigAlgebra 
 sigAlgebra |
2 | 1 | sseli 3599 |
. . 3
 sigAlgebra 
 sigAlgebra |
3 | | elex 3212 |
. . . 4
 sigAlgebra 
  |
4 | | issiga 30174 |
. . . . 5
 
sigAlgebra   

   
         |
5 | | elpwuni 4616 |
. . . . . . . 8
  
    |
6 | 5 | biimpa 501 |
. . . . . . 7
       |
7 | | ancom 466 |
. . . . . . 7
 

      |
8 | | eqcom 2629 |
. . . . . . 7
 
   |
9 | 6, 7, 8 | 3imtr4i 281 |
. . . . . 6
 


   |
10 | 9 | 3ad2antr1 1226 |
. . . . 5
 
   
           |
11 | 4, 10 | syl6bi 243 |
. . . 4
 
sigAlgebra 
    |
12 | 3, 11 | mpcom 38 |
. . 3
 sigAlgebra 
   |
13 | 2, 12 | jca 554 |
. 2
 sigAlgebra    sigAlgebra
    |
14 | | elex 3212 |
. . . . 5
  sigAlgebra   |
15 | | isrnsiga 30176 |
. . . . . . . 8
  sigAlgebra
      
            |
16 | 15 | simprbi 480 |
. . . . . . 7
  sigAlgebra      
           |
17 | | elpwuni 4616 |
. . . . . . . . . . . . 13
  
    |
18 | 17 | biimpa 501 |
. . . . . . . . . . . 12
       |
19 | | ancom 466 |
. . . . . . . . . . . 12
 

      |
20 | | eqcom 2629 |
. . . . . . . . . . . 12
 
   |
21 | 18, 19, 20 | 3imtr4i 281 |
. . . . . . . . . . 11
 


   |
22 | 21 | 3ad2antr1 1226 |
. . . . . . . . . 10
 
               |
23 | | pweq 4161 |
. . . . . . . . . . . 12
  
    |
24 | 23 | sseq2d 3633 |
. . . . . . . . . . 11
   
     |
25 | | eleq1 2689 |
. . . . . . . . . . . 12
       |
26 | | difeq1 3721 |
. . . . . . . . . . . . . 14
         |
27 | 26 | eleq1d 2686 |
. . . . . . . . . . . . 13
           |
28 | 27 | ralbidv 2986 |
. . . . . . . . . . . 12
             |
29 | 25, 28 | 3anbi12d 1400 |
. . . . . . . . . . 11
    
       
 
             |
30 | 24, 29 | anbi12d 747 |
. . . . . . . . . 10
    
    
     
    
              |
31 | 22, 30 | syl 17 |
. . . . . . . . 9
 
                
        
    
              |
32 | 31 | ibi 256 |
. . . . . . . 8
 
                 
     
      |
33 | 32 | exlimiv 1858 |
. . . . . . 7
    
    
           
     
      |
34 | 16, 33 | syl 17 |
. . . . . 6
  sigAlgebra      
     
      |
35 | 34 | simprd 479 |
. . . . 5
  sigAlgebra  
            |
36 | 14, 35 | jca 554 |
. . . 4
  sigAlgebra 
 
             |
37 | | eleq1 2689 |
. . . . . . . 8
       |
38 | | difeq1 3721 |
. . . . . . . . . 10
         |
39 | 38 | eleq1d 2686 |
. . . . . . . . 9
           |
40 | 39 | ralbidv 2986 |
. . . . . . . 8
             |
41 | 37, 40 | 3anbi12d 1400 |
. . . . . . 7
    
       
 
             |
42 | 41 | biimprd 238 |
. . . . . 6
    

     
     
          |
43 | | pwuni 4474 |
. . . . . . 7
   |
44 | | pweq 4161 |
. . . . . . 7
  
    |
45 | 43, 44 | syl5sseqr 3654 |
. . . . . 6
     |
46 | 42, 45 | jctild 566 |
. . . . 5
    

     
      
            |
47 | 46 | anim2d 589 |
. . . 4
   
 
           
  
 
            |
48 | 4 | biimpar 502 |
. . . 4
  
   
        
sigAlgebra    |
49 | 36, 47, 48 | syl56 36 |
. . 3
    sigAlgebra
sigAlgebra     |
50 | 49 | impcom 446 |
. 2
   sigAlgebra
  sigAlgebra    |
51 | 13, 50 | impbii 199 |
1
 sigAlgebra 
 
sigAlgebra     |