MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgcgrtriv Structured version   Visualization version   Unicode version

Theorem tgcgrtriv 25379
Description: Degenerate segments are congruent. Theorem 2.8 of [Schwabhauser] p. 28. (Contributed by Thierry Arnoux, 23-Mar-2019.)
Hypotheses
Ref Expression
tkgeom.p  |-  P  =  ( Base `  G
)
tkgeom.d  |-  .-  =  ( dist `  G )
tkgeom.i  |-  I  =  (Itv `  G )
tkgeom.g  |-  ( ph  ->  G  e. TarskiG )
tgcgrtriv.1  |-  ( ph  ->  A  e.  P )
tgcgrtriv.2  |-  ( ph  ->  B  e.  P )
Assertion
Ref Expression
tgcgrtriv  |-  ( ph  ->  ( A  .-  A
)  =  ( B 
.-  B ) )

Proof of Theorem tgcgrtriv
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 tkgeom.p . . . . 5  |-  P  =  ( Base `  G
)
2 tkgeom.d . . . . 5  |-  .-  =  ( dist `  G )
3 tkgeom.i . . . . 5  |-  I  =  (Itv `  G )
4 tkgeom.g . . . . . 6  |-  ( ph  ->  G  e. TarskiG )
54ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  x  e.  P )  /\  ( A  e.  ( B I x )  /\  ( A  .-  x )  =  ( B  .-  B ) ) )  ->  G  e. TarskiG )
6 tgcgrtriv.1 . . . . . 6  |-  ( ph  ->  A  e.  P )
76ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  x  e.  P )  /\  ( A  e.  ( B I x )  /\  ( A  .-  x )  =  ( B  .-  B ) ) )  ->  A  e.  P
)
8 simplr 792 . . . . 5  |-  ( ( ( ph  /\  x  e.  P )  /\  ( A  e.  ( B I x )  /\  ( A  .-  x )  =  ( B  .-  B ) ) )  ->  x  e.  P
)
9 tgcgrtriv.2 . . . . . 6  |-  ( ph  ->  B  e.  P )
109ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  x  e.  P )  /\  ( A  e.  ( B I x )  /\  ( A  .-  x )  =  ( B  .-  B ) ) )  ->  B  e.  P
)
11 simprr 796 . . . . 5  |-  ( ( ( ph  /\  x  e.  P )  /\  ( A  e.  ( B I x )  /\  ( A  .-  x )  =  ( B  .-  B ) ) )  ->  ( A  .-  x )  =  ( B  .-  B ) )
121, 2, 3, 5, 7, 8, 10, 11axtgcgrid 25362 . . . 4  |-  ( ( ( ph  /\  x  e.  P )  /\  ( A  e.  ( B I x )  /\  ( A  .-  x )  =  ( B  .-  B ) ) )  ->  A  =  x )
1312oveq2d 6666 . . 3  |-  ( ( ( ph  /\  x  e.  P )  /\  ( A  e.  ( B I x )  /\  ( A  .-  x )  =  ( B  .-  B ) ) )  ->  ( A  .-  A )  =  ( A  .-  x ) )
1413, 11eqtrd 2656 . 2  |-  ( ( ( ph  /\  x  e.  P )  /\  ( A  e.  ( B I x )  /\  ( A  .-  x )  =  ( B  .-  B ) ) )  ->  ( A  .-  A )  =  ( B  .-  B ) )
151, 2, 3, 4, 9, 6, 9, 9axtgsegcon 25363 . 2  |-  ( ph  ->  E. x  e.  P  ( A  e.  ( B I x )  /\  ( A  .-  x )  =  ( B  .-  B ) ) )
1614, 15r19.29a 3078 1  |-  ( ph  ->  ( A  .-  A
)  =  ( B 
.-  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   ` cfv 5888  (class class class)co 6650   Basecbs 15857   distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-trkgc 25347  df-trkgcb 25349  df-trkg 25352
This theorem is referenced by:  tgcgrextend  25380  tgcgrsub  25404  iscgrglt  25409  trgcgrg  25410  tgbtwnconn1lem3  25469  leg0  25487
  Copyright terms: Public domain W3C validator