| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > axtgsegcon | Structured version Visualization version Unicode version | ||
| Description: Axiom of segment
construction, Axiom A4 of [Schwabhauser]
p. 11. As
discussed in Axiom 4 of [Tarski1999] p. 178, "The intuitive
content
[is that] given any line segment |
| Ref | Expression |
|---|---|
| axtrkg.p |
|
| axtrkg.d |
|
| axtrkg.i |
|
| axtrkg.g |
|
| axtgsegcon.1 |
|
| axtgsegcon.2 |
|
| axtgsegcon.3 |
|
| axtgsegcon.4 |
|
| Ref | Expression |
|---|---|
| axtgsegcon |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-trkg 25352 |
. . . . . 6
| |
| 2 | inss2 3834 |
. . . . . . 7
| |
| 3 | inss1 3833 |
. . . . . . 7
| |
| 4 | 2, 3 | sstri 3612 |
. . . . . 6
|
| 5 | 1, 4 | eqsstri 3635 |
. . . . 5
|
| 6 | axtrkg.g |
. . . . 5
| |
| 7 | 5, 6 | sseldi 3601 |
. . . 4
|
| 8 | axtrkg.p |
. . . . . . 7
| |
| 9 | axtrkg.d |
. . . . . . 7
| |
| 10 | axtrkg.i |
. . . . . . 7
| |
| 11 | 8, 9, 10 | istrkgcb 25355 |
. . . . . 6
|
| 12 | 11 | simprbi 480 |
. . . . 5
|
| 13 | 12 | simprd 479 |
. . . 4
|
| 14 | 7, 13 | syl 17 |
. . 3
|
| 15 | axtgsegcon.1 |
. . . 4
| |
| 16 | axtgsegcon.2 |
. . . 4
| |
| 17 | oveq1 6657 |
. . . . . . . . 9
| |
| 18 | 17 | eleq2d 2687 |
. . . . . . . 8
|
| 19 | 18 | anbi1d 741 |
. . . . . . 7
|
| 20 | 19 | rexbidv 3052 |
. . . . . 6
|
| 21 | 20 | 2ralbidv 2989 |
. . . . 5
|
| 22 | eleq1 2689 |
. . . . . . . 8
| |
| 23 | oveq1 6657 |
. . . . . . . . 9
| |
| 24 | 23 | eqeq1d 2624 |
. . . . . . . 8
|
| 25 | 22, 24 | anbi12d 747 |
. . . . . . 7
|
| 26 | 25 | rexbidv 3052 |
. . . . . 6
|
| 27 | 26 | 2ralbidv 2989 |
. . . . 5
|
| 28 | 21, 27 | rspc2v 3322 |
. . . 4
|
| 29 | 15, 16, 28 | syl2anc 693 |
. . 3
|
| 30 | 14, 29 | mpd 15 |
. 2
|
| 31 | axtgsegcon.3 |
. . 3
| |
| 32 | axtgsegcon.4 |
. . 3
| |
| 33 | oveq1 6657 |
. . . . . . 7
| |
| 34 | 33 | eqeq2d 2632 |
. . . . . 6
|
| 35 | 34 | anbi2d 740 |
. . . . 5
|
| 36 | 35 | rexbidv 3052 |
. . . 4
|
| 37 | oveq2 6658 |
. . . . . . 7
| |
| 38 | 37 | eqeq2d 2632 |
. . . . . 6
|
| 39 | 38 | anbi2d 740 |
. . . . 5
|
| 40 | 39 | rexbidv 3052 |
. . . 4
|
| 41 | 36, 40 | rspc2v 3322 |
. . 3
|
| 42 | 31, 32, 41 | syl2anc 693 |
. 2
|
| 43 | 30, 42 | mpd 15 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 df-trkgcb 25349 df-trkg 25352 |
| This theorem is referenced by: tgcgrtriv 25379 tgbtwntriv2 25382 tgbtwnouttr2 25390 tgbtwndiff 25401 tgifscgr 25403 tgcgrxfr 25413 lnext 25462 tgbtwnconn1lem3 25469 tgbtwnconn1 25470 legtrid 25486 hlcgrex 25511 mirreu3 25549 miriso 25565 midexlem 25587 footex 25613 opphllem 25627 dfcgra2 25721 f1otrg 25751 |
| Copyright terms: Public domain | W3C validator |