MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axtgsegcon Structured version   Visualization version   Unicode version

Theorem axtgsegcon 25363
Description: Axiom of segment construction, Axiom A4 of [Schwabhauser] p. 11. As discussed in Axiom 4 of [Tarski1999] p. 178, "The intuitive content [is that] given any line segment  A B, one can construct a line segment congruent to it, starting at any point  Y and going in the direction of any ray containing  Y. The ray is determined by the point  Y and a second point  X, the endpoint of the ray. The other endpoint of the line segment to be constructed is just the point  z whose existence is asserted." (Contributed by Thierry Arnoux, 15-Mar-2019.)
Hypotheses
Ref Expression
axtrkg.p  |-  P  =  ( Base `  G
)
axtrkg.d  |-  .-  =  ( dist `  G )
axtrkg.i  |-  I  =  (Itv `  G )
axtrkg.g  |-  ( ph  ->  G  e. TarskiG )
axtgsegcon.1  |-  ( ph  ->  X  e.  P )
axtgsegcon.2  |-  ( ph  ->  Y  e.  P )
axtgsegcon.3  |-  ( ph  ->  A  e.  P )
axtgsegcon.4  |-  ( ph  ->  B  e.  P )
Assertion
Ref Expression
axtgsegcon  |-  ( ph  ->  E. z  e.  P  ( Y  e.  ( X I z )  /\  ( Y  .-  z )  =  ( A  .-  B ) ) )
Distinct variable groups:    z, A    z, B    z, I    z, P    z, X    z, Y    z, 
.-
Allowed substitution hints:    ph( z)    G( z)

Proof of Theorem axtgsegcon
Dummy variables  f 
i  p  x  y  a  b  c  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-trkg 25352 . . . . . 6  |- TarskiG  =  ( (TarskiGC  i^i TarskiGB )  i^i  (TarskiGCB  i^i  {
f  |  [. ( Base `  f )  /  p ]. [. (Itv `  f )  /  i ]. (LineG `  f )  =  ( x  e.  p ,  y  e.  ( p  \  {
x } )  |->  { z  e.  p  |  ( z  e.  ( x i y )  \/  x  e.  ( z i y )  \/  y  e.  ( x i z ) ) } ) } ) )
2 inss2 3834 . . . . . . 7  |-  ( (TarskiGC  i^i TarskiGB )  i^i  (TarskiGCB  i^i  { f  | 
[. ( Base `  f
)  /  p ]. [. (Itv `  f )  /  i ]. (LineG `  f )  =  ( x  e.  p ,  y  e.  ( p 
\  { x }
)  |->  { z  e.  p  |  ( z  e.  ( x i y )  \/  x  e.  ( z i y )  \/  y  e.  ( x i z ) ) } ) } ) )  C_  (TarskiGCB  i^i  { f  |  [. ( Base `  f )  /  p ]. [. (Itv `  f )  /  i ]. (LineG `  f )  =  ( x  e.  p ,  y  e.  ( p  \  {
x } )  |->  { z  e.  p  |  ( z  e.  ( x i y )  \/  x  e.  ( z i y )  \/  y  e.  ( x i z ) ) } ) } )
3 inss1 3833 . . . . . . 7  |-  (TarskiGCB  i^i  {
f  |  [. ( Base `  f )  /  p ]. [. (Itv `  f )  /  i ]. (LineG `  f )  =  ( x  e.  p ,  y  e.  ( p  \  {
x } )  |->  { z  e.  p  |  ( z  e.  ( x i y )  \/  x  e.  ( z i y )  \/  y  e.  ( x i z ) ) } ) } )  C_ TarskiGCB
42, 3sstri 3612 . . . . . 6  |-  ( (TarskiGC  i^i TarskiGB )  i^i  (TarskiGCB  i^i  { f  | 
[. ( Base `  f
)  /  p ]. [. (Itv `  f )  /  i ]. (LineG `  f )  =  ( x  e.  p ,  y  e.  ( p 
\  { x }
)  |->  { z  e.  p  |  ( z  e.  ( x i y )  \/  x  e.  ( z i y )  \/  y  e.  ( x i z ) ) } ) } ) )  C_ TarskiGCB
51, 4eqsstri 3635 . . . . 5  |- TarskiG  C_ TarskiGCB
6 axtrkg.g . . . . 5  |-  ( ph  ->  G  e. TarskiG )
75, 6sseldi 3601 . . . 4  |-  ( ph  ->  G  e. TarskiGCB )
8 axtrkg.p . . . . . . 7  |-  P  =  ( Base `  G
)
9 axtrkg.d . . . . . . 7  |-  .-  =  ( dist `  G )
10 axtrkg.i . . . . . . 7  |-  I  =  (Itv `  G )
118, 9, 10istrkgcb 25355 . . . . . 6  |-  ( G  e. TarskiGCB  <->  ( G  e.  _V  /\  ( A. x  e.  P  A. y  e.  P  A. z  e.  P  A. u  e.  P  A. a  e.  P  A. b  e.  P  A. c  e.  P  A. v  e.  P  ( ( ( x  =/=  y  /\  y  e.  ( x I z )  /\  b  e.  ( a I c ) )  /\  (
( ( x  .-  y )  =  ( a  .-  b )  /\  ( y  .-  z )  =  ( b  .-  c ) )  /\  ( ( x  .-  u )  =  ( a  .-  v )  /\  (
y  .-  u )  =  ( b  .-  v ) ) ) )  ->  ( z  .-  u )  =  ( c  .-  v ) )  /\  A. x  e.  P  A. y  e.  P  A. a  e.  P  A. b  e.  P  E. z  e.  P  ( y  e.  ( x I z )  /\  ( y 
.-  z )  =  ( a  .-  b
) ) ) ) )
1211simprbi 480 . . . . 5  |-  ( G  e. TarskiGCB 
->  ( A. x  e.  P  A. y  e.  P  A. z  e.  P  A. u  e.  P  A. a  e.  P  A. b  e.  P  A. c  e.  P  A. v  e.  P  ( ( ( x  =/=  y  /\  y  e.  ( x I z )  /\  b  e.  ( a
I c ) )  /\  ( ( ( x  .-  y )  =  ( a  .-  b )  /\  (
y  .-  z )  =  ( b  .-  c ) )  /\  ( ( x  .-  u )  =  ( a  .-  v )  /\  ( y  .-  u )  =  ( b  .-  v ) ) ) )  -> 
( z  .-  u
)  =  ( c 
.-  v ) )  /\  A. x  e.  P  A. y  e.  P  A. a  e.  P  A. b  e.  P  E. z  e.  P  ( y  e.  ( x I z )  /\  ( y 
.-  z )  =  ( a  .-  b
) ) ) )
1312simprd 479 . . . 4  |-  ( G  e. TarskiGCB 
->  A. x  e.  P  A. y  e.  P  A. a  e.  P  A. b  e.  P  E. z  e.  P  ( y  e.  ( x I z )  /\  ( y  .-  z )  =  ( a  .-  b ) ) )
147, 13syl 17 . . 3  |-  ( ph  ->  A. x  e.  P  A. y  e.  P  A. a  e.  P  A. b  e.  P  E. z  e.  P  ( y  e.  ( x I z )  /\  ( y  .-  z )  =  ( a  .-  b ) ) )
15 axtgsegcon.1 . . . 4  |-  ( ph  ->  X  e.  P )
16 axtgsegcon.2 . . . 4  |-  ( ph  ->  Y  e.  P )
17 oveq1 6657 . . . . . . . . 9  |-  ( x  =  X  ->  (
x I z )  =  ( X I z ) )
1817eleq2d 2687 . . . . . . . 8  |-  ( x  =  X  ->  (
y  e.  ( x I z )  <->  y  e.  ( X I z ) ) )
1918anbi1d 741 . . . . . . 7  |-  ( x  =  X  ->  (
( y  e.  ( x I z )  /\  ( y  .-  z )  =  ( a  .-  b ) )  <->  ( y  e.  ( X I z )  /\  ( y 
.-  z )  =  ( a  .-  b
) ) ) )
2019rexbidv 3052 . . . . . 6  |-  ( x  =  X  ->  ( E. z  e.  P  ( y  e.  ( x I z )  /\  ( y  .-  z )  =  ( a  .-  b ) )  <->  E. z  e.  P  ( y  e.  ( X I z )  /\  ( y  .-  z )  =  ( a  .-  b ) ) ) )
21202ralbidv 2989 . . . . 5  |-  ( x  =  X  ->  ( A. a  e.  P  A. b  e.  P  E. z  e.  P  ( y  e.  ( x I z )  /\  ( y  .-  z )  =  ( a  .-  b ) )  <->  A. a  e.  P  A. b  e.  P  E. z  e.  P  ( y  e.  ( X I z )  /\  ( y  .-  z )  =  ( a  .-  b ) ) ) )
22 eleq1 2689 . . . . . . . 8  |-  ( y  =  Y  ->  (
y  e.  ( X I z )  <->  Y  e.  ( X I z ) ) )
23 oveq1 6657 . . . . . . . . 9  |-  ( y  =  Y  ->  (
y  .-  z )  =  ( Y  .-  z ) )
2423eqeq1d 2624 . . . . . . . 8  |-  ( y  =  Y  ->  (
( y  .-  z
)  =  ( a 
.-  b )  <->  ( Y  .-  z )  =  ( a  .-  b ) ) )
2522, 24anbi12d 747 . . . . . . 7  |-  ( y  =  Y  ->  (
( y  e.  ( X I z )  /\  ( y  .-  z )  =  ( a  .-  b ) )  <->  ( Y  e.  ( X I z )  /\  ( Y 
.-  z )  =  ( a  .-  b
) ) ) )
2625rexbidv 3052 . . . . . 6  |-  ( y  =  Y  ->  ( E. z  e.  P  ( y  e.  ( X I z )  /\  ( y  .-  z )  =  ( a  .-  b ) )  <->  E. z  e.  P  ( Y  e.  ( X I z )  /\  ( Y  .-  z )  =  ( a  .-  b ) ) ) )
27262ralbidv 2989 . . . . 5  |-  ( y  =  Y  ->  ( A. a  e.  P  A. b  e.  P  E. z  e.  P  ( y  e.  ( X I z )  /\  ( y  .-  z )  =  ( a  .-  b ) )  <->  A. a  e.  P  A. b  e.  P  E. z  e.  P  ( Y  e.  ( X I z )  /\  ( Y  .-  z )  =  ( a  .-  b ) ) ) )
2821, 27rspc2v 3322 . . . 4  |-  ( ( X  e.  P  /\  Y  e.  P )  ->  ( A. x  e.  P  A. y  e.  P  A. a  e.  P  A. b  e.  P  E. z  e.  P  ( y  e.  ( x I z )  /\  ( y 
.-  z )  =  ( a  .-  b
) )  ->  A. a  e.  P  A. b  e.  P  E. z  e.  P  ( Y  e.  ( X I z )  /\  ( Y 
.-  z )  =  ( a  .-  b
) ) ) )
2915, 16, 28syl2anc 693 . . 3  |-  ( ph  ->  ( A. x  e.  P  A. y  e.  P  A. a  e.  P  A. b  e.  P  E. z  e.  P  ( y  e.  ( x I z )  /\  ( y 
.-  z )  =  ( a  .-  b
) )  ->  A. a  e.  P  A. b  e.  P  E. z  e.  P  ( Y  e.  ( X I z )  /\  ( Y 
.-  z )  =  ( a  .-  b
) ) ) )
3014, 29mpd 15 . 2  |-  ( ph  ->  A. a  e.  P  A. b  e.  P  E. z  e.  P  ( Y  e.  ( X I z )  /\  ( Y  .-  z )  =  ( a  .-  b ) ) )
31 axtgsegcon.3 . . 3  |-  ( ph  ->  A  e.  P )
32 axtgsegcon.4 . . 3  |-  ( ph  ->  B  e.  P )
33 oveq1 6657 . . . . . . 7  |-  ( a  =  A  ->  (
a  .-  b )  =  ( A  .-  b ) )
3433eqeq2d 2632 . . . . . 6  |-  ( a  =  A  ->  (
( Y  .-  z
)  =  ( a 
.-  b )  <->  ( Y  .-  z )  =  ( A  .-  b ) ) )
3534anbi2d 740 . . . . 5  |-  ( a  =  A  ->  (
( Y  e.  ( X I z )  /\  ( Y  .-  z )  =  ( a  .-  b ) )  <->  ( Y  e.  ( X I z )  /\  ( Y 
.-  z )  =  ( A  .-  b
) ) ) )
3635rexbidv 3052 . . . 4  |-  ( a  =  A  ->  ( E. z  e.  P  ( Y  e.  ( X I z )  /\  ( Y  .-  z )  =  ( a  .-  b ) )  <->  E. z  e.  P  ( Y  e.  ( X I z )  /\  ( Y  .-  z )  =  ( A  .-  b ) ) ) )
37 oveq2 6658 . . . . . . 7  |-  ( b  =  B  ->  ( A  .-  b )  =  ( A  .-  B
) )
3837eqeq2d 2632 . . . . . 6  |-  ( b  =  B  ->  (
( Y  .-  z
)  =  ( A 
.-  b )  <->  ( Y  .-  z )  =  ( A  .-  B ) ) )
3938anbi2d 740 . . . . 5  |-  ( b  =  B  ->  (
( Y  e.  ( X I z )  /\  ( Y  .-  z )  =  ( A  .-  b ) )  <->  ( Y  e.  ( X I z )  /\  ( Y 
.-  z )  =  ( A  .-  B
) ) ) )
4039rexbidv 3052 . . . 4  |-  ( b  =  B  ->  ( E. z  e.  P  ( Y  e.  ( X I z )  /\  ( Y  .-  z )  =  ( A  .-  b ) )  <->  E. z  e.  P  ( Y  e.  ( X I z )  /\  ( Y  .-  z )  =  ( A  .-  B ) ) ) )
4136, 40rspc2v 3322 . . 3  |-  ( ( A  e.  P  /\  B  e.  P )  ->  ( A. a  e.  P  A. b  e.  P  E. z  e.  P  ( Y  e.  ( X I z )  /\  ( Y 
.-  z )  =  ( a  .-  b
) )  ->  E. z  e.  P  ( Y  e.  ( X I z )  /\  ( Y 
.-  z )  =  ( A  .-  B
) ) ) )
4231, 32, 41syl2anc 693 . 2  |-  ( ph  ->  ( A. a  e.  P  A. b  e.  P  E. z  e.  P  ( Y  e.  ( X I z )  /\  ( Y 
.-  z )  =  ( a  .-  b
) )  ->  E. z  e.  P  ( Y  e.  ( X I z )  /\  ( Y 
.-  z )  =  ( A  .-  B
) ) ) )
4330, 42mpd 15 1  |-  ( ph  ->  E. z  e.  P  ( Y  e.  ( X I z )  /\  ( Y  .-  z )  =  ( A  .-  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    \/ w3o 1036    /\ w3a 1037    = wceq 1483    e. wcel 1990   {cab 2608    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200   [.wsbc 3435    \ cdif 3571    i^i cin 3573   {csn 4177   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652   Basecbs 15857   distcds 15950  TarskiGcstrkg 25329  TarskiGCcstrkgc 25330  TarskiGBcstrkgb 25331  TarskiGCBcstrkgcb 25332  Itvcitv 25335  LineGclng 25336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-trkgcb 25349  df-trkg 25352
This theorem is referenced by:  tgcgrtriv  25379  tgbtwntriv2  25382  tgbtwnouttr2  25390  tgbtwndiff  25401  tgifscgr  25403  tgcgrxfr  25413  lnext  25462  tgbtwnconn1lem3  25469  tgbtwnconn1  25470  legtrid  25486  hlcgrex  25511  mirreu3  25549  miriso  25565  midexlem  25587  footex  25613  opphllem  25627  dfcgra2  25721  f1otrg  25751
  Copyright terms: Public domain W3C validator