| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgcolg | Structured version Visualization version Unicode version | ||
| Description: We choose the notation
|
| Ref | Expression |
|---|---|
| tglngval.p |
|
| tglngval.l |
|
| tglngval.i |
|
| tglngval.g |
|
| tglngval.x |
|
| tglngval.y |
|
| tgcolg.z |
|
| Ref | Expression |
|---|---|
| tgcolg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 477 |
. . . 4
| |
| 2 | 1 | olcd 408 |
. . 3
|
| 3 | tglngval.p |
. . . . . 6
| |
| 4 | eqid 2622 |
. . . . . 6
| |
| 5 | tglngval.i |
. . . . . 6
| |
| 6 | tglngval.g |
. . . . . . 7
| |
| 7 | 6 | adantr 481 |
. . . . . 6
|
| 8 | tgcolg.z |
. . . . . . 7
| |
| 9 | 8 | adantr 481 |
. . . . . 6
|
| 10 | tglngval.x |
. . . . . . 7
| |
| 11 | 10 | adantr 481 |
. . . . . 6
|
| 12 | 3, 4, 5, 7, 9, 11 | tgbtwntriv2 25382 |
. . . . 5
|
| 13 | 1 | oveq2d 6666 |
. . . . 5
|
| 14 | 12, 13 | eleqtrd 2703 |
. . . 4
|
| 15 | 14 | 3mix2d 1237 |
. . 3
|
| 16 | 2, 15 | 2thd 255 |
. 2
|
| 17 | simpr 477 |
. . . . . 6
| |
| 18 | 17 | neneqd 2799 |
. . . . 5
|
| 19 | biorf 420 |
. . . . 5
| |
| 20 | 18, 19 | syl 17 |
. . . 4
|
| 21 | orcom 402 |
. . . 4
| |
| 22 | 20, 21 | syl6bb 276 |
. . 3
|
| 23 | tglngval.l |
. . . 4
| |
| 24 | 6 | adantr 481 |
. . . 4
|
| 25 | 10 | adantr 481 |
. . . 4
|
| 26 | tglngval.y |
. . . . 5
| |
| 27 | 26 | adantr 481 |
. . . 4
|
| 28 | 8 | adantr 481 |
. . . 4
|
| 29 | 3, 23, 5, 24, 25, 27, 17, 28 | tgellng 25448 |
. . 3
|
| 30 | 22, 29 | bitr3d 270 |
. 2
|
| 31 | 16, 30 | pm2.61dane 2881 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-trkgc 25347 df-trkgcb 25349 df-trkg 25352 |
| This theorem is referenced by: btwncolg1 25450 btwncolg2 25451 btwncolg3 25452 colcom 25453 colrot1 25454 lnxfr 25461 lnext 25462 tgfscgr 25463 tglowdim2l 25545 outpasch 25647 |
| Copyright terms: Public domain | W3C validator |