| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgfscgr | Structured version Visualization version Unicode version | ||
| Description: Congruence law for the general five segment configuration. Theorem 4.16 of [Schwabhauser] p. 37. (Contributed by Thierry Arnoux, 27-Apr-2019.) |
| Ref | Expression |
|---|---|
| tglngval.p |
|
| tglngval.l |
|
| tglngval.i |
|
| tglngval.g |
|
| tglngval.x |
|
| tglngval.y |
|
| tgcolg.z |
|
| lnxfr.r |
|
| lnxfr.a |
|
| lnxfr.b |
|
| lnxfr.d |
|
| tgfscgr.t |
|
| tgfscgr.c |
|
| tgfscgr.d |
|
| tgfscgr.1 |
|
| tgfscgr.2 |
|
| tgfscgr.3 |
|
| tgfscgr.4 |
|
| tgfscgr.5 |
|
| Ref | Expression |
|---|---|
| tgfscgr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tglngval.p |
. . 3
| |
| 2 | lnxfr.d |
. . 3
| |
| 3 | tglngval.i |
. . 3
| |
| 4 | tglngval.g |
. . . 4
| |
| 5 | 4 | adantr 481 |
. . 3
|
| 6 | tglngval.x |
. . . 4
| |
| 7 | 6 | adantr 481 |
. . 3
|
| 8 | tglngval.y |
. . . 4
| |
| 9 | 8 | adantr 481 |
. . 3
|
| 10 | tgcolg.z |
. . . 4
| |
| 11 | 10 | adantr 481 |
. . 3
|
| 12 | lnxfr.a |
. . . 4
| |
| 13 | 12 | adantr 481 |
. . 3
|
| 14 | lnxfr.b |
. . . 4
| |
| 15 | 14 | adantr 481 |
. . 3
|
| 16 | tgfscgr.c |
. . . 4
| |
| 17 | 16 | adantr 481 |
. . 3
|
| 18 | tgfscgr.t |
. . . 4
| |
| 19 | 18 | adantr 481 |
. . 3
|
| 20 | tgfscgr.d |
. . . 4
| |
| 21 | 20 | adantr 481 |
. . 3
|
| 22 | tgfscgr.5 |
. . . 4
| |
| 23 | 22 | adantr 481 |
. . 3
|
| 24 | simpr 477 |
. . 3
| |
| 25 | lnxfr.r |
. . . 4
| |
| 26 | tgfscgr.2 |
. . . . 5
| |
| 27 | 26 | adantr 481 |
. . . 4
|
| 28 | 1, 2, 3, 25, 5, 7, 9, 11, 13, 15, 17, 27, 24 | tgbtwnxfr 25425 |
. . 3
|
| 29 | 1, 2, 3, 25, 5, 7, 9, 11, 13, 15, 17, 27 | cgr3simp1 25415 |
. . 3
|
| 30 | 1, 2, 3, 25, 5, 7, 9, 11, 13, 15, 17, 27 | cgr3simp2 25416 |
. . 3
|
| 31 | tgfscgr.3 |
. . . 4
| |
| 32 | 31 | adantr 481 |
. . 3
|
| 33 | tgfscgr.4 |
. . . 4
| |
| 34 | 33 | adantr 481 |
. . 3
|
| 35 | 1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 24, 28, 29, 30, 32, 34 | axtg5seg 25364 |
. 2
|
| 36 | 4 | adantr 481 |
. . 3
|
| 37 | 8 | adantr 481 |
. . 3
|
| 38 | 6 | adantr 481 |
. . 3
|
| 39 | 10 | adantr 481 |
. . 3
|
| 40 | 14 | adantr 481 |
. . 3
|
| 41 | 12 | adantr 481 |
. . 3
|
| 42 | 16 | adantr 481 |
. . 3
|
| 43 | 18 | adantr 481 |
. . 3
|
| 44 | 20 | adantr 481 |
. . 3
|
| 45 | 22 | necomd 2849 |
. . . 4
|
| 46 | 45 | adantr 481 |
. . 3
|
| 47 | simpr 477 |
. . 3
| |
| 48 | 26 | adantr 481 |
. . . . 5
|
| 49 | 1, 2, 3, 25, 36, 38, 37, 39, 41, 40, 42, 48 | cgr3swap12 25418 |
. . . 4
|
| 50 | 1, 2, 3, 25, 36, 37, 38, 39, 40, 41, 42, 49, 47 | tgbtwnxfr 25425 |
. . 3
|
| 51 | 1, 2, 3, 25, 36, 37, 38, 39, 40, 41, 42, 49 | cgr3simp1 25415 |
. . 3
|
| 52 | 1, 2, 3, 25, 36, 37, 38, 39, 40, 41, 42, 49 | cgr3simp2 25416 |
. . 3
|
| 53 | 33 | adantr 481 |
. . 3
|
| 54 | 31 | adantr 481 |
. . 3
|
| 55 | 1, 2, 3, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 50, 51, 52, 53, 54 | axtg5seg 25364 |
. 2
|
| 56 | 4 | adantr 481 |
. . 3
|
| 57 | 6 | adantr 481 |
. . 3
|
| 58 | 10 | adantr 481 |
. . 3
|
| 59 | 8 | adantr 481 |
. . 3
|
| 60 | 18 | adantr 481 |
. . 3
|
| 61 | 12 | adantr 481 |
. . 3
|
| 62 | 16 | adantr 481 |
. . 3
|
| 63 | 14 | adantr 481 |
. . 3
|
| 64 | 20 | adantr 481 |
. . 3
|
| 65 | simpr 477 |
. . 3
| |
| 66 | 26 | adantr 481 |
. . . . 5
|
| 67 | 1, 2, 3, 25, 56, 57, 59, 58, 61, 63, 62, 66 | cgr3swap23 25419 |
. . . 4
|
| 68 | 1, 2, 3, 25, 56, 57, 58, 59, 61, 62, 63, 67, 65 | tgbtwnxfr 25425 |
. . 3
|
| 69 | 1, 2, 3, 25, 56, 57, 59, 58, 61, 63, 62, 66 | cgr3simp1 25415 |
. . 3
|
| 70 | 1, 2, 3, 25, 56, 57, 58, 59, 61, 62, 63, 67 | cgr3simp2 25416 |
. . 3
|
| 71 | 31 | adantr 481 |
. . 3
|
| 72 | 33 | adantr 481 |
. . 3
|
| 73 | 1, 2, 3, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 72 | tgifscgr 25403 |
. 2
|
| 74 | tgfscgr.1 |
. . 3
| |
| 75 | tglngval.l |
. . . 4
| |
| 76 | 1, 75, 3, 4, 6, 10, 8 | tgcolg 25449 |
. . 3
|
| 77 | 74, 76 | mpbid 222 |
. 2
|
| 78 | 35, 55, 73, 77 | mpjao3dan 1395 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-oadd 7564 df-er 7742 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-card 8765 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-xnn0 11364 df-z 11378 df-uz 11688 df-fz 12327 df-fzo 12466 df-hash 13118 df-word 13299 df-concat 13301 df-s1 13302 df-s2 13593 df-s3 13594 df-trkgc 25347 df-trkgb 25348 df-trkgcb 25349 df-trkg 25352 df-cgrg 25406 |
| This theorem is referenced by: lncgr 25464 mirtrcgr 25578 symquadlem 25584 cgracgr 25710 cgraswap 25712 cgrg3col4 25734 |
| Copyright terms: Public domain | W3C validator |