MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgfscgr Structured version   Visualization version   Unicode version

Theorem tgfscgr 25463
Description: Congruence law for the general five segment configuration. Theorem 4.16 of [Schwabhauser] p. 37. (Contributed by Thierry Arnoux, 27-Apr-2019.)
Hypotheses
Ref Expression
tglngval.p  |-  P  =  ( Base `  G
)
tglngval.l  |-  L  =  (LineG `  G )
tglngval.i  |-  I  =  (Itv `  G )
tglngval.g  |-  ( ph  ->  G  e. TarskiG )
tglngval.x  |-  ( ph  ->  X  e.  P )
tglngval.y  |-  ( ph  ->  Y  e.  P )
tgcolg.z  |-  ( ph  ->  Z  e.  P )
lnxfr.r  |-  .~  =  (cgrG `  G )
lnxfr.a  |-  ( ph  ->  A  e.  P )
lnxfr.b  |-  ( ph  ->  B  e.  P )
lnxfr.d  |-  .-  =  ( dist `  G )
tgfscgr.t  |-  ( ph  ->  T  e.  P )
tgfscgr.c  |-  ( ph  ->  C  e.  P )
tgfscgr.d  |-  ( ph  ->  D  e.  P )
tgfscgr.1  |-  ( ph  ->  ( Y  e.  ( X L Z )  \/  X  =  Z ) )
tgfscgr.2  |-  ( ph  ->  <" X Y Z ">  .~  <" A B C "> )
tgfscgr.3  |-  ( ph  ->  ( X  .-  T
)  =  ( A 
.-  D ) )
tgfscgr.4  |-  ( ph  ->  ( Y  .-  T
)  =  ( B 
.-  D ) )
tgfscgr.5  |-  ( ph  ->  X  =/=  Y )
Assertion
Ref Expression
tgfscgr  |-  ( ph  ->  ( Z  .-  T
)  =  ( C 
.-  D ) )

Proof of Theorem tgfscgr
StepHypRef Expression
1 tglngval.p . . 3  |-  P  =  ( Base `  G
)
2 lnxfr.d . . 3  |-  .-  =  ( dist `  G )
3 tglngval.i . . 3  |-  I  =  (Itv `  G )
4 tglngval.g . . . 4  |-  ( ph  ->  G  e. TarskiG )
54adantr 481 . . 3  |-  ( (
ph  /\  Y  e.  ( X I Z ) )  ->  G  e. TarskiG )
6 tglngval.x . . . 4  |-  ( ph  ->  X  e.  P )
76adantr 481 . . 3  |-  ( (
ph  /\  Y  e.  ( X I Z ) )  ->  X  e.  P )
8 tglngval.y . . . 4  |-  ( ph  ->  Y  e.  P )
98adantr 481 . . 3  |-  ( (
ph  /\  Y  e.  ( X I Z ) )  ->  Y  e.  P )
10 tgcolg.z . . . 4  |-  ( ph  ->  Z  e.  P )
1110adantr 481 . . 3  |-  ( (
ph  /\  Y  e.  ( X I Z ) )  ->  Z  e.  P )
12 lnxfr.a . . . 4  |-  ( ph  ->  A  e.  P )
1312adantr 481 . . 3  |-  ( (
ph  /\  Y  e.  ( X I Z ) )  ->  A  e.  P )
14 lnxfr.b . . . 4  |-  ( ph  ->  B  e.  P )
1514adantr 481 . . 3  |-  ( (
ph  /\  Y  e.  ( X I Z ) )  ->  B  e.  P )
16 tgfscgr.c . . . 4  |-  ( ph  ->  C  e.  P )
1716adantr 481 . . 3  |-  ( (
ph  /\  Y  e.  ( X I Z ) )  ->  C  e.  P )
18 tgfscgr.t . . . 4  |-  ( ph  ->  T  e.  P )
1918adantr 481 . . 3  |-  ( (
ph  /\  Y  e.  ( X I Z ) )  ->  T  e.  P )
20 tgfscgr.d . . . 4  |-  ( ph  ->  D  e.  P )
2120adantr 481 . . 3  |-  ( (
ph  /\  Y  e.  ( X I Z ) )  ->  D  e.  P )
22 tgfscgr.5 . . . 4  |-  ( ph  ->  X  =/=  Y )
2322adantr 481 . . 3  |-  ( (
ph  /\  Y  e.  ( X I Z ) )  ->  X  =/=  Y )
24 simpr 477 . . 3  |-  ( (
ph  /\  Y  e.  ( X I Z ) )  ->  Y  e.  ( X I Z ) )
25 lnxfr.r . . . 4  |-  .~  =  (cgrG `  G )
26 tgfscgr.2 . . . . 5  |-  ( ph  ->  <" X Y Z ">  .~  <" A B C "> )
2726adantr 481 . . . 4  |-  ( (
ph  /\  Y  e.  ( X I Z ) )  ->  <" X Y Z ">  .~  <" A B C "> )
281, 2, 3, 25, 5, 7, 9, 11, 13, 15, 17, 27, 24tgbtwnxfr 25425 . . 3  |-  ( (
ph  /\  Y  e.  ( X I Z ) )  ->  B  e.  ( A I C ) )
291, 2, 3, 25, 5, 7, 9, 11, 13, 15, 17, 27cgr3simp1 25415 . . 3  |-  ( (
ph  /\  Y  e.  ( X I Z ) )  ->  ( X  .-  Y )  =  ( A  .-  B ) )
301, 2, 3, 25, 5, 7, 9, 11, 13, 15, 17, 27cgr3simp2 25416 . . 3  |-  ( (
ph  /\  Y  e.  ( X I Z ) )  ->  ( Y  .-  Z )  =  ( B  .-  C ) )
31 tgfscgr.3 . . . 4  |-  ( ph  ->  ( X  .-  T
)  =  ( A 
.-  D ) )
3231adantr 481 . . 3  |-  ( (
ph  /\  Y  e.  ( X I Z ) )  ->  ( X  .-  T )  =  ( A  .-  D ) )
33 tgfscgr.4 . . . 4  |-  ( ph  ->  ( Y  .-  T
)  =  ( B 
.-  D ) )
3433adantr 481 . . 3  |-  ( (
ph  /\  Y  e.  ( X I Z ) )  ->  ( Y  .-  T )  =  ( B  .-  D ) )
351, 2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 24, 28, 29, 30, 32, 34axtg5seg 25364 . 2  |-  ( (
ph  /\  Y  e.  ( X I Z ) )  ->  ( Z  .-  T )  =  ( C  .-  D ) )
364adantr 481 . . 3  |-  ( (
ph  /\  X  e.  ( Y I Z ) )  ->  G  e. TarskiG )
378adantr 481 . . 3  |-  ( (
ph  /\  X  e.  ( Y I Z ) )  ->  Y  e.  P )
386adantr 481 . . 3  |-  ( (
ph  /\  X  e.  ( Y I Z ) )  ->  X  e.  P )
3910adantr 481 . . 3  |-  ( (
ph  /\  X  e.  ( Y I Z ) )  ->  Z  e.  P )
4014adantr 481 . . 3  |-  ( (
ph  /\  X  e.  ( Y I Z ) )  ->  B  e.  P )
4112adantr 481 . . 3  |-  ( (
ph  /\  X  e.  ( Y I Z ) )  ->  A  e.  P )
4216adantr 481 . . 3  |-  ( (
ph  /\  X  e.  ( Y I Z ) )  ->  C  e.  P )
4318adantr 481 . . 3  |-  ( (
ph  /\  X  e.  ( Y I Z ) )  ->  T  e.  P )
4420adantr 481 . . 3  |-  ( (
ph  /\  X  e.  ( Y I Z ) )  ->  D  e.  P )
4522necomd 2849 . . . 4  |-  ( ph  ->  Y  =/=  X )
4645adantr 481 . . 3  |-  ( (
ph  /\  X  e.  ( Y I Z ) )  ->  Y  =/=  X )
47 simpr 477 . . 3  |-  ( (
ph  /\  X  e.  ( Y I Z ) )  ->  X  e.  ( Y I Z ) )
4826adantr 481 . . . . 5  |-  ( (
ph  /\  X  e.  ( Y I Z ) )  ->  <" X Y Z ">  .~  <" A B C "> )
491, 2, 3, 25, 36, 38, 37, 39, 41, 40, 42, 48cgr3swap12 25418 . . . 4  |-  ( (
ph  /\  X  e.  ( Y I Z ) )  ->  <" Y X Z ">  .~  <" B A C "> )
501, 2, 3, 25, 36, 37, 38, 39, 40, 41, 42, 49, 47tgbtwnxfr 25425 . . 3  |-  ( (
ph  /\  X  e.  ( Y I Z ) )  ->  A  e.  ( B I C ) )
511, 2, 3, 25, 36, 37, 38, 39, 40, 41, 42, 49cgr3simp1 25415 . . 3  |-  ( (
ph  /\  X  e.  ( Y I Z ) )  ->  ( Y  .-  X )  =  ( B  .-  A ) )
521, 2, 3, 25, 36, 37, 38, 39, 40, 41, 42, 49cgr3simp2 25416 . . 3  |-  ( (
ph  /\  X  e.  ( Y I Z ) )  ->  ( X  .-  Z )  =  ( A  .-  C ) )
5333adantr 481 . . 3  |-  ( (
ph  /\  X  e.  ( Y I Z ) )  ->  ( Y  .-  T )  =  ( B  .-  D ) )
5431adantr 481 . . 3  |-  ( (
ph  /\  X  e.  ( Y I Z ) )  ->  ( X  .-  T )  =  ( A  .-  D ) )
551, 2, 3, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 50, 51, 52, 53, 54axtg5seg 25364 . 2  |-  ( (
ph  /\  X  e.  ( Y I Z ) )  ->  ( Z  .-  T )  =  ( C  .-  D ) )
564adantr 481 . . 3  |-  ( (
ph  /\  Z  e.  ( X I Y ) )  ->  G  e. TarskiG )
576adantr 481 . . 3  |-  ( (
ph  /\  Z  e.  ( X I Y ) )  ->  X  e.  P )
5810adantr 481 . . 3  |-  ( (
ph  /\  Z  e.  ( X I Y ) )  ->  Z  e.  P )
598adantr 481 . . 3  |-  ( (
ph  /\  Z  e.  ( X I Y ) )  ->  Y  e.  P )
6018adantr 481 . . 3  |-  ( (
ph  /\  Z  e.  ( X I Y ) )  ->  T  e.  P )
6112adantr 481 . . 3  |-  ( (
ph  /\  Z  e.  ( X I Y ) )  ->  A  e.  P )
6216adantr 481 . . 3  |-  ( (
ph  /\  Z  e.  ( X I Y ) )  ->  C  e.  P )
6314adantr 481 . . 3  |-  ( (
ph  /\  Z  e.  ( X I Y ) )  ->  B  e.  P )
6420adantr 481 . . 3  |-  ( (
ph  /\  Z  e.  ( X I Y ) )  ->  D  e.  P )
65 simpr 477 . . 3  |-  ( (
ph  /\  Z  e.  ( X I Y ) )  ->  Z  e.  ( X I Y ) )
6626adantr 481 . . . . 5  |-  ( (
ph  /\  Z  e.  ( X I Y ) )  ->  <" X Y Z ">  .~  <" A B C "> )
671, 2, 3, 25, 56, 57, 59, 58, 61, 63, 62, 66cgr3swap23 25419 . . . 4  |-  ( (
ph  /\  Z  e.  ( X I Y ) )  ->  <" X Z Y ">  .~  <" A C B "> )
681, 2, 3, 25, 56, 57, 58, 59, 61, 62, 63, 67, 65tgbtwnxfr 25425 . . 3  |-  ( (
ph  /\  Z  e.  ( X I Y ) )  ->  C  e.  ( A I B ) )
691, 2, 3, 25, 56, 57, 59, 58, 61, 63, 62, 66cgr3simp1 25415 . . 3  |-  ( (
ph  /\  Z  e.  ( X I Y ) )  ->  ( X  .-  Y )  =  ( A  .-  B ) )
701, 2, 3, 25, 56, 57, 58, 59, 61, 62, 63, 67cgr3simp2 25416 . . 3  |-  ( (
ph  /\  Z  e.  ( X I Y ) )  ->  ( Z  .-  Y )  =  ( C  .-  B ) )
7131adantr 481 . . 3  |-  ( (
ph  /\  Z  e.  ( X I Y ) )  ->  ( X  .-  T )  =  ( A  .-  D ) )
7233adantr 481 . . 3  |-  ( (
ph  /\  Z  e.  ( X I Y ) )  ->  ( Y  .-  T )  =  ( B  .-  D ) )
731, 2, 3, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 68, 69, 70, 71, 72tgifscgr 25403 . 2  |-  ( (
ph  /\  Z  e.  ( X I Y ) )  ->  ( Z  .-  T )  =  ( C  .-  D ) )
74 tgfscgr.1 . . 3  |-  ( ph  ->  ( Y  e.  ( X L Z )  \/  X  =  Z ) )
75 tglngval.l . . . 4  |-  L  =  (LineG `  G )
761, 75, 3, 4, 6, 10, 8tgcolg 25449 . . 3  |-  ( ph  ->  ( ( Y  e.  ( X L Z )  \/  X  =  Z )  <->  ( Y  e.  ( X I Z )  \/  X  e.  ( Y I Z )  \/  Z  e.  ( X I Y ) ) ) )
7774, 76mpbid 222 . 2  |-  ( ph  ->  ( Y  e.  ( X I Z )  \/  X  e.  ( Y I Z )  \/  Z  e.  ( X I Y ) ) )
7835, 55, 73, 77mpjao3dan 1395 1  |-  ( ph  ->  ( Z  .-  T
)  =  ( C 
.-  D ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    \/ w3o 1036    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   <"cs3 13587   Basecbs 15857   distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335  LineGclng 25336  cgrGccgrg 25405
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkg 25352  df-cgrg 25406
This theorem is referenced by:  lncgr  25464  mirtrcgr  25578  symquadlem  25584  cgracgr  25710  cgraswap  25712  cgrg3col4  25734
  Copyright terms: Public domain W3C validator