MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglnne Structured version   Visualization version   Unicode version

Theorem tglnne 25523
Description: It takes two different points to form a line. (Contributed by Thierry Arnoux, 27-Nov-2019.)
Hypotheses
Ref Expression
tglineelsb2.p  |-  B  =  ( Base `  G
)
tglineelsb2.i  |-  I  =  (Itv `  G )
tglineelsb2.l  |-  L  =  (LineG `  G )
tglineelsb2.g  |-  ( ph  ->  G  e. TarskiG )
tglnne.x  |-  ( ph  ->  X  e.  B )
tglnne.y  |-  ( ph  ->  Y  e.  B )
tglnne.1  |-  ( ph  ->  ( X L Y )  e.  ran  L
)
Assertion
Ref Expression
tglnne  |-  ( ph  ->  X  =/=  Y )

Proof of Theorem tglnne
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tglineelsb2.p . . 3  |-  B  =  ( Base `  G
)
2 tglineelsb2.l . . 3  |-  L  =  (LineG `  G )
3 tglineelsb2.i . . 3  |-  I  =  (Itv `  G )
4 tglineelsb2.g . . . 4  |-  ( ph  ->  G  e. TarskiG )
54ad3antrrr 766 . . 3  |-  ( ( ( ( ph  /\  x  e.  B )  /\  y  e.  B
)  /\  ( ( X L Y )  =  ( x L y )  /\  x  =/=  y ) )  ->  G  e. TarskiG )
6 tglnne.x . . . 4  |-  ( ph  ->  X  e.  B )
76ad3antrrr 766 . . 3  |-  ( ( ( ( ph  /\  x  e.  B )  /\  y  e.  B
)  /\  ( ( X L Y )  =  ( x L y )  /\  x  =/=  y ) )  ->  X  e.  B )
8 tglnne.y . . . 4  |-  ( ph  ->  Y  e.  B )
98ad3antrrr 766 . . 3  |-  ( ( ( ( ph  /\  x  e.  B )  /\  y  e.  B
)  /\  ( ( X L Y )  =  ( x L y )  /\  x  =/=  y ) )  ->  Y  e.  B )
10 simpllr 799 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  B )  /\  y  e.  B
)  /\  ( ( X L Y )  =  ( x L y )  /\  x  =/=  y ) )  ->  x  e.  B )
11 simplr 792 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  B )  /\  y  e.  B
)  /\  ( ( X L Y )  =  ( x L y )  /\  x  =/=  y ) )  -> 
y  e.  B )
12 simprr 796 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  B )  /\  y  e.  B
)  /\  ( ( X L Y )  =  ( x L y )  /\  x  =/=  y ) )  ->  x  =/=  y )
13 eqid 2622 . . . . . 6  |-  ( dist `  G )  =  (
dist `  G )
141, 13, 3, 5, 10, 11tgbtwntriv1 25386 . . . . 5  |-  ( ( ( ( ph  /\  x  e.  B )  /\  y  e.  B
)  /\  ( ( X L Y )  =  ( x L y )  /\  x  =/=  y ) )  ->  x  e.  ( x I y ) )
151, 3, 2, 5, 10, 11, 10, 12, 14btwnlng1 25514 . . . 4  |-  ( ( ( ( ph  /\  x  e.  B )  /\  y  e.  B
)  /\  ( ( X L Y )  =  ( x L y )  /\  x  =/=  y ) )  ->  x  e.  ( x L y ) )
16 simprl 794 . . . 4  |-  ( ( ( ( ph  /\  x  e.  B )  /\  y  e.  B
)  /\  ( ( X L Y )  =  ( x L y )  /\  x  =/=  y ) )  -> 
( X L Y )  =  ( x L y ) )
1715, 16eleqtrrd 2704 . . 3  |-  ( ( ( ( ph  /\  x  e.  B )  /\  y  e.  B
)  /\  ( ( X L Y )  =  ( x L y )  /\  x  =/=  y ) )  ->  x  e.  ( X L Y ) )
181, 2, 3, 5, 7, 9, 17tglngne 25445 . 2  |-  ( ( ( ( ph  /\  x  e.  B )  /\  y  e.  B
)  /\  ( ( X L Y )  =  ( x L y )  /\  x  =/=  y ) )  ->  X  =/=  Y )
19 tglnne.1 . . 3  |-  ( ph  ->  ( X L Y )  e.  ran  L
)
201, 3, 2, 4, 19tgisline 25522 . 2  |-  ( ph  ->  E. x  e.  B  E. y  e.  B  ( ( X L Y )  =  ( x L y )  /\  x  =/=  y
) )
2118, 20r19.29vva 3081 1  |-  ( ph  ->  X  =/=  Y )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   ran crn 5115   ` cfv 5888  (class class class)co 6650   Basecbs 15857   distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335  LineGclng 25336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkg 25352
This theorem is referenced by:  footne  25615  footeq  25616  hlperpnel  25617  colperp  25621  mideulem2  25626  opphllem  25627  midex  25629  opphllem3  25641  opphllem6  25644  opphl  25646  lmieu  25676  lnperpex  25695  trgcopy  25696
  Copyright terms: Public domain W3C validator