| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tglnne | Structured version Visualization version Unicode version | ||
| Description: It takes two different points to form a line. (Contributed by Thierry Arnoux, 27-Nov-2019.) |
| Ref | Expression |
|---|---|
| tglineelsb2.p |
|
| tglineelsb2.i |
|
| tglineelsb2.l |
|
| tglineelsb2.g |
|
| tglnne.x |
|
| tglnne.y |
|
| tglnne.1 |
|
| Ref | Expression |
|---|---|
| tglnne |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tglineelsb2.p |
. . 3
| |
| 2 | tglineelsb2.l |
. . 3
| |
| 3 | tglineelsb2.i |
. . 3
| |
| 4 | tglineelsb2.g |
. . . 4
| |
| 5 | 4 | ad3antrrr 766 |
. . 3
|
| 6 | tglnne.x |
. . . 4
| |
| 7 | 6 | ad3antrrr 766 |
. . 3
|
| 8 | tglnne.y |
. . . 4
| |
| 9 | 8 | ad3antrrr 766 |
. . 3
|
| 10 | simpllr 799 |
. . . . 5
| |
| 11 | simplr 792 |
. . . . 5
| |
| 12 | simprr 796 |
. . . . 5
| |
| 13 | eqid 2622 |
. . . . . 6
| |
| 14 | 1, 13, 3, 5, 10, 11 | tgbtwntriv1 25386 |
. . . . 5
|
| 15 | 1, 3, 2, 5, 10, 11, 10, 12, 14 | btwnlng1 25514 |
. . . 4
|
| 16 | simprl 794 |
. . . 4
| |
| 17 | 15, 16 | eleqtrrd 2704 |
. . 3
|
| 18 | 1, 2, 3, 5, 7, 9, 17 | tglngne 25445 |
. 2
|
| 19 | tglnne.1 |
. . 3
| |
| 20 | 1, 3, 2, 4, 19 | tgisline 25522 |
. 2
|
| 21 | 18, 20 | r19.29vva 3081 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-trkgc 25347 df-trkgb 25348 df-trkgcb 25349 df-trkg 25352 |
| This theorem is referenced by: footne 25615 footeq 25616 hlperpnel 25617 colperp 25621 mideulem2 25626 opphllem 25627 midex 25629 opphllem3 25641 opphllem6 25644 opphl 25646 lmieu 25676 lnperpex 25695 trgcopy 25696 |
| Copyright terms: Public domain | W3C validator |