MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  perpneq Structured version   Visualization version   Unicode version

Theorem perpneq 25609
Description: Two perpendicular lines are different. Theorem 8.14 of [Schwabhauser] p. 59. (Contributed by Thierry Arnoux, 18-Oct-2019.)
Hypotheses
Ref Expression
isperp.p  |-  P  =  ( Base `  G
)
isperp.d  |-  .-  =  ( dist `  G )
isperp.i  |-  I  =  (Itv `  G )
isperp.l  |-  L  =  (LineG `  G )
isperp.g  |-  ( ph  ->  G  e. TarskiG )
isperp.a  |-  ( ph  ->  A  e.  ran  L
)
isperp.b  |-  ( ph  ->  B  e.  ran  L
)
perpcom.1  |-  ( ph  ->  A (⟂G `  G
) B )
Assertion
Ref Expression
perpneq  |-  ( ph  ->  A  =/=  B )

Proof of Theorem perpneq
Dummy variables  u  v  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isperp.p . . . . . . 7  |-  P  =  ( Base `  G
)
2 isperp.i . . . . . . 7  |-  I  =  (Itv `  G )
3 isperp.l . . . . . . 7  |-  L  =  (LineG `  G )
4 isperp.g . . . . . . . . 9  |-  ( ph  ->  G  e. TarskiG )
54adantr 481 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( A  i^i  B ) )  ->  G  e. TarskiG )
65ad5antr 770 . . . . . . 7  |-  ( ( ( ( ( ( ( ph  /\  x  e.  ( A  i^i  B
) )  /\  A. y  e.  A  A. z  e.  B  <" y x z ">  e.  (∟G `  G
) )  /\  u  e.  A )  /\  x  =/=  u )  /\  v  e.  B )  /\  x  =/=  v )  ->  G  e. TarskiG )
74ad5antr 770 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  e.  ( A  i^i  B ) )  /\  u  e.  A )  /\  x  =/=  u )  /\  v  e.  B )  /\  x  =/=  v )  ->  G  e. TarskiG )
8 isperp.a . . . . . . . . . 10  |-  ( ph  ->  A  e.  ran  L
)
98ad5antr 770 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  e.  ( A  i^i  B ) )  /\  u  e.  A )  /\  x  =/=  u )  /\  v  e.  B )  /\  x  =/=  v )  ->  A  e.  ran  L )
10 inss1 3833 . . . . . . . . . . 11  |-  ( A  i^i  B )  C_  A
11 simpr 477 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( A  i^i  B ) )  ->  x  e.  ( A  i^i  B ) )
1210, 11sseldi 3601 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( A  i^i  B ) )  ->  x  e.  A )
1312ad4antr 768 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  e.  ( A  i^i  B ) )  /\  u  e.  A )  /\  x  =/=  u )  /\  v  e.  B )  /\  x  =/=  v )  ->  x  e.  A )
141, 3, 2, 7, 9, 13tglnpt 25444 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  x  e.  ( A  i^i  B ) )  /\  u  e.  A )  /\  x  =/=  u )  /\  v  e.  B )  /\  x  =/=  v )  ->  x  e.  P )
1514adantl4r 787 . . . . . . 7  |-  ( ( ( ( ( ( ( ph  /\  x  e.  ( A  i^i  B
) )  /\  A. y  e.  A  A. z  e.  B  <" y x z ">  e.  (∟G `  G
) )  /\  u  e.  A )  /\  x  =/=  u )  /\  v  e.  B )  /\  x  =/=  v )  ->  x  e.  P )
16 isperp.b . . . . . . . . . 10  |-  ( ph  ->  B  e.  ran  L
)
1716ad5antr 770 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  e.  ( A  i^i  B ) )  /\  u  e.  A )  /\  x  =/=  u )  /\  v  e.  B )  /\  x  =/=  v )  ->  B  e.  ran  L )
18 simplr 792 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  e.  ( A  i^i  B ) )  /\  u  e.  A )  /\  x  =/=  u )  /\  v  e.  B )  /\  x  =/=  v )  ->  v  e.  B )
191, 3, 2, 7, 17, 18tglnpt 25444 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  x  e.  ( A  i^i  B ) )  /\  u  e.  A )  /\  x  =/=  u )  /\  v  e.  B )  /\  x  =/=  v )  ->  v  e.  P )
2019adantl4r 787 . . . . . . 7  |-  ( ( ( ( ( ( ( ph  /\  x  e.  ( A  i^i  B
) )  /\  A. y  e.  A  A. z  e.  B  <" y x z ">  e.  (∟G `  G
) )  /\  u  e.  A )  /\  x  =/=  u )  /\  v  e.  B )  /\  x  =/=  v )  ->  v  e.  P )
21 simp-4r 807 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  x  e.  ( A  i^i  B ) )  /\  u  e.  A )  /\  x  =/=  u )  /\  v  e.  B )  /\  x  =/=  v )  ->  u  e.  A )
221, 3, 2, 7, 9, 21tglnpt 25444 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  x  e.  ( A  i^i  B ) )  /\  u  e.  A )  /\  x  =/=  u )  /\  v  e.  B )  /\  x  =/=  v )  ->  u  e.  P )
2322adantl4r 787 . . . . . . 7  |-  ( ( ( ( ( ( ( ph  /\  x  e.  ( A  i^i  B
) )  /\  A. y  e.  A  A. z  e.  B  <" y x z ">  e.  (∟G `  G
) )  /\  u  e.  A )  /\  x  =/=  u )  /\  v  e.  B )  /\  x  =/=  v )  ->  u  e.  P )
24 isperp.d . . . . . . . . 9  |-  .-  =  ( dist `  G )
25 eqid 2622 . . . . . . . . 9  |-  (pInvG `  G )  =  (pInvG `  G )
26 simp-4r 807 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  x  e.  ( A  i^i  B
) )  /\  A. y  e.  A  A. z  e.  B  <" y x z ">  e.  (∟G `  G
) )  /\  u  e.  A )  /\  x  =/=  u )  /\  v  e.  B )  /\  x  =/=  v )  ->  u  e.  A )
27 simplr 792 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  x  e.  ( A  i^i  B
) )  /\  A. y  e.  A  A. z  e.  B  <" y x z ">  e.  (∟G `  G
) )  /\  u  e.  A )  /\  x  =/=  u )  /\  v  e.  B )  /\  x  =/=  v )  ->  v  e.  B )
28 simp-5r 809 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  x  e.  ( A  i^i  B
) )  /\  A. y  e.  A  A. z  e.  B  <" y x z ">  e.  (∟G `  G
) )  /\  u  e.  A )  /\  x  =/=  u )  /\  v  e.  B )  /\  x  =/=  v )  ->  A. y  e.  A  A. z  e.  B  <" y
x z ">  e.  (∟G `  G )
)
29 id 22 . . . . . . . . . . . . 13  |-  ( y  =  u  ->  y  =  u )
30 eqidd 2623 . . . . . . . . . . . . 13  |-  ( y  =  u  ->  x  =  x )
31 eqidd 2623 . . . . . . . . . . . . 13  |-  ( y  =  u  ->  z  =  z )
3229, 30, 31s3eqd 13609 . . . . . . . . . . . 12  |-  ( y  =  u  ->  <" y
x z ">  =  <" u x z "> )
3332eleq1d 2686 . . . . . . . . . . 11  |-  ( y  =  u  ->  ( <" y x z ">  e.  (∟G `  G )  <->  <" u x z ">  e.  (∟G `  G )
) )
34 eqidd 2623 . . . . . . . . . . . . 13  |-  ( z  =  v  ->  u  =  u )
35 eqidd 2623 . . . . . . . . . . . . 13  |-  ( z  =  v  ->  x  =  x )
36 id 22 . . . . . . . . . . . . 13  |-  ( z  =  v  ->  z  =  v )
3734, 35, 36s3eqd 13609 . . . . . . . . . . . 12  |-  ( z  =  v  ->  <" u x z ">  =  <" u x v "> )
3837eleq1d 2686 . . . . . . . . . . 11  |-  ( z  =  v  ->  ( <" u x z ">  e.  (∟G `  G )  <->  <" u x v ">  e.  (∟G `  G )
) )
3933, 38rspc2va 3323 . . . . . . . . . 10  |-  ( ( ( u  e.  A  /\  v  e.  B
)  /\  A. y  e.  A  A. z  e.  B  <" y
x z ">  e.  (∟G `  G )
)  ->  <" u x v ">  e.  (∟G `  G )
)
4026, 27, 28, 39syl21anc 1325 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ph  /\  x  e.  ( A  i^i  B
) )  /\  A. y  e.  A  A. z  e.  B  <" y x z ">  e.  (∟G `  G
) )  /\  u  e.  A )  /\  x  =/=  u )  /\  v  e.  B )  /\  x  =/=  v )  ->  <" u x v ">  e.  (∟G `  G )
)
41 simpllr 799 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  x  e.  ( A  i^i  B ) )  /\  u  e.  A )  /\  x  =/=  u )  /\  v  e.  B )  /\  x  =/=  v )  ->  x  =/=  u )
4241necomd 2849 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  x  e.  ( A  i^i  B ) )  /\  u  e.  A )  /\  x  =/=  u )  /\  v  e.  B )  /\  x  =/=  v )  ->  u  =/=  x )
4342adantl4r 787 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ph  /\  x  e.  ( A  i^i  B
) )  /\  A. y  e.  A  A. z  e.  B  <" y x z ">  e.  (∟G `  G
) )  /\  u  e.  A )  /\  x  =/=  u )  /\  v  e.  B )  /\  x  =/=  v )  ->  u  =/=  x )
44 simpr 477 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  x  e.  ( A  i^i  B ) )  /\  u  e.  A )  /\  x  =/=  u )  /\  v  e.  B )  /\  x  =/=  v )  ->  x  =/=  v )
4544necomd 2849 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  x  e.  ( A  i^i  B ) )  /\  u  e.  A )  /\  x  =/=  u )  /\  v  e.  B )  /\  x  =/=  v )  ->  v  =/=  x )
4645adantl4r 787 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ph  /\  x  e.  ( A  i^i  B
) )  /\  A. y  e.  A  A. z  e.  B  <" y x z ">  e.  (∟G `  G
) )  /\  u  e.  A )  /\  x  =/=  u )  /\  v  e.  B )  /\  x  =/=  v )  ->  v  =/=  x )
471, 24, 2, 3, 25, 6, 23, 15, 20, 40, 43, 46ragncol 25604 . . . . . . . 8  |-  ( ( ( ( ( ( ( ph  /\  x  e.  ( A  i^i  B
) )  /\  A. y  e.  A  A. z  e.  B  <" y x z ">  e.  (∟G `  G
) )  /\  u  e.  A )  /\  x  =/=  u )  /\  v  e.  B )  /\  x  =/=  v )  ->  -.  ( v  e.  ( u L x )  \/  u  =  x ) )
481, 3, 2, 6, 23, 15, 20, 47ncolrot2 25458 . . . . . . 7  |-  ( ( ( ( ( ( ( ph  /\  x  e.  ( A  i^i  B
) )  /\  A. y  e.  A  A. z  e.  B  <" y x z ">  e.  (∟G `  G
) )  /\  u  e.  A )  /\  x  =/=  u )  /\  v  e.  B )  /\  x  =/=  v )  ->  -.  ( x  e.  (
v L u )  \/  v  =  u ) )
491, 2, 3, 6, 15, 20, 23, 15, 48tglineneq 25539 . . . . . 6  |-  ( ( ( ( ( ( ( ph  /\  x  e.  ( A  i^i  B
) )  /\  A. y  e.  A  A. z  e.  B  <" y x z ">  e.  (∟G `  G
) )  /\  u  e.  A )  /\  x  =/=  u )  /\  v  e.  B )  /\  x  =/=  v )  ->  (
x L v )  =/=  ( u L x ) )
5049necomd 2849 . . . . 5  |-  ( ( ( ( ( ( ( ph  /\  x  e.  ( A  i^i  B
) )  /\  A. y  e.  A  A. z  e.  B  <" y x z ">  e.  (∟G `  G
) )  /\  u  e.  A )  /\  x  =/=  u )  /\  v  e.  B )  /\  x  =/=  v )  ->  (
u L x )  =/=  ( x L v ) )
511, 2, 3, 7, 22, 14, 42, 42, 9, 21, 13tglinethru 25531 . . . . . 6  |-  ( ( ( ( ( (
ph  /\  x  e.  ( A  i^i  B ) )  /\  u  e.  A )  /\  x  =/=  u )  /\  v  e.  B )  /\  x  =/=  v )  ->  A  =  ( u L x ) )
5251adantl4r 787 . . . . 5  |-  ( ( ( ( ( ( ( ph  /\  x  e.  ( A  i^i  B
) )  /\  A. y  e.  A  A. z  e.  B  <" y x z ">  e.  (∟G `  G
) )  /\  u  e.  A )  /\  x  =/=  u )  /\  v  e.  B )  /\  x  =/=  v )  ->  A  =  ( u L x ) )
53 inss2 3834 . . . . . . . . 9  |-  ( A  i^i  B )  C_  B
5453, 11sseldi 3601 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( A  i^i  B ) )  ->  x  e.  B )
5554ad4antr 768 . . . . . . 7  |-  ( ( ( ( ( (
ph  /\  x  e.  ( A  i^i  B ) )  /\  u  e.  A )  /\  x  =/=  u )  /\  v  e.  B )  /\  x  =/=  v )  ->  x  e.  B )
561, 2, 3, 7, 14, 19, 44, 44, 17, 55, 18tglinethru 25531 . . . . . 6  |-  ( ( ( ( ( (
ph  /\  x  e.  ( A  i^i  B ) )  /\  u  e.  A )  /\  x  =/=  u )  /\  v  e.  B )  /\  x  =/=  v )  ->  B  =  ( x L v ) )
5756adantl4r 787 . . . . 5  |-  ( ( ( ( ( ( ( ph  /\  x  e.  ( A  i^i  B
) )  /\  A. y  e.  A  A. z  e.  B  <" y x z ">  e.  (∟G `  G
) )  /\  u  e.  A )  /\  x  =/=  u )  /\  v  e.  B )  /\  x  =/=  v )  ->  B  =  ( x L v ) )
5850, 52, 573netr4d 2871 . . . 4  |-  ( ( ( ( ( ( ( ph  /\  x  e.  ( A  i^i  B
) )  /\  A. y  e.  A  A. z  e.  B  <" y x z ">  e.  (∟G `  G
) )  /\  u  e.  A )  /\  x  =/=  u )  /\  v  e.  B )  /\  x  =/=  v )  ->  A  =/=  B )
5916adantr 481 . . . . . 6  |-  ( (
ph  /\  x  e.  ( A  i^i  B ) )  ->  B  e.  ran  L )
601, 2, 3, 5, 59, 54tglnpt2 25536 . . . . 5  |-  ( (
ph  /\  x  e.  ( A  i^i  B ) )  ->  E. v  e.  B  x  =/=  v )
6160ad3antrrr 766 . . . 4  |-  ( ( ( ( ( ph  /\  x  e.  ( A  i^i  B ) )  /\  A. y  e.  A  A. z  e.  B  <" y x z ">  e.  (∟G `  G ) )  /\  u  e.  A
)  /\  x  =/=  u )  ->  E. v  e.  B  x  =/=  v )
6258, 61r19.29a 3078 . . 3  |-  ( ( ( ( ( ph  /\  x  e.  ( A  i^i  B ) )  /\  A. y  e.  A  A. z  e.  B  <" y x z ">  e.  (∟G `  G ) )  /\  u  e.  A
)  /\  x  =/=  u )  ->  A  =/=  B )
638adantr 481 . . . . 5  |-  ( (
ph  /\  x  e.  ( A  i^i  B ) )  ->  A  e.  ran  L )
641, 2, 3, 5, 63, 12tglnpt2 25536 . . . 4  |-  ( (
ph  /\  x  e.  ( A  i^i  B ) )  ->  E. u  e.  A  x  =/=  u )
6564adantr 481 . . 3  |-  ( ( ( ph  /\  x  e.  ( A  i^i  B
) )  /\  A. y  e.  A  A. z  e.  B  <" y x z ">  e.  (∟G `  G
) )  ->  E. u  e.  A  x  =/=  u )
6662, 65r19.29a 3078 . 2  |-  ( ( ( ph  /\  x  e.  ( A  i^i  B
) )  /\  A. y  e.  A  A. z  e.  B  <" y x z ">  e.  (∟G `  G
) )  ->  A  =/=  B )
67 perpcom.1 . . 3  |-  ( ph  ->  A (⟂G `  G
) B )
681, 24, 2, 3, 4, 8, 16isperp 25607 . . 3  |-  ( ph  ->  ( A (⟂G `  G
) B  <->  E. x  e.  ( A  i^i  B
) A. y  e.  A  A. z  e.  B  <" y x z ">  e.  (∟G `  G ) ) )
6967, 68mpbid 222 . 2  |-  ( ph  ->  E. x  e.  ( A  i^i  B ) A. y  e.  A  A. z  e.  B  <" y x z ">  e.  (∟G `  G ) )
7066, 69r19.29a 3078 1  |-  ( ph  ->  A  =/=  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    i^i cin 3573   class class class wbr 4653   ran crn 5115   ` cfv 5888  (class class class)co 6650   <"cs3 13587   Basecbs 15857   distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335  LineGclng 25336  pInvGcmir 25547  ∟Gcrag 25588  ⟂Gcperpg 25590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkg 25352  df-cgrg 25406  df-mir 25548  df-rag 25589  df-perpg 25591
This theorem is referenced by:  isperp2  25610  footne  25615  lmieu  25676
  Copyright terms: Public domain W3C validator