MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hlcgreulem Structured version   Visualization version   Unicode version

Theorem hlcgreulem 25512
Description: Lemma for hlcgreu 25513. (Contributed by Thierry Arnoux, 9-Aug-2020.)
Hypotheses
Ref Expression
ishlg.p  |-  P  =  ( Base `  G
)
ishlg.i  |-  I  =  (Itv `  G )
ishlg.k  |-  K  =  (hlG `  G )
ishlg.a  |-  ( ph  ->  A  e.  P )
ishlg.b  |-  ( ph  ->  B  e.  P )
ishlg.c  |-  ( ph  ->  C  e.  P )
hlln.1  |-  ( ph  ->  G  e. TarskiG )
hltr.d  |-  ( ph  ->  D  e.  P )
hlcgrex.m  |-  .-  =  ( dist `  G )
hlcgrex.1  |-  ( ph  ->  D  =/=  A )
hlcgrex.2  |-  ( ph  ->  B  =/=  C )
hlcgreulem.x  |-  ( ph  ->  X  e.  P )
hlcgreulem.y  |-  ( ph  ->  Y  e.  P )
hlcgreulem.1  |-  ( ph  ->  X ( K `  A ) D )
hlcgreulem.2  |-  ( ph  ->  Y ( K `  A ) D )
hlcgreulem.3  |-  ( ph  ->  ( A  .-  X
)  =  ( B 
.-  C ) )
hlcgreulem.4  |-  ( ph  ->  ( A  .-  Y
)  =  ( B 
.-  C ) )
Assertion
Ref Expression
hlcgreulem  |-  ( ph  ->  X  =  Y )

Proof of Theorem hlcgreulem
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ishlg.p . . 3  |-  P  =  ( Base `  G
)
2 hlcgrex.m . . 3  |-  .-  =  ( dist `  G )
3 ishlg.i . . 3  |-  I  =  (Itv `  G )
4 hlln.1 . . . 4  |-  ( ph  ->  G  e. TarskiG )
54ad2antrr 762 . . 3  |-  ( ( ( ph  /\  y  e.  P )  /\  ( A  e.  ( D I y )  /\  A  =/=  y ) )  ->  G  e. TarskiG )
6 ishlg.a . . . 4  |-  ( ph  ->  A  e.  P )
76ad2antrr 762 . . 3  |-  ( ( ( ph  /\  y  e.  P )  /\  ( A  e.  ( D I y )  /\  A  =/=  y ) )  ->  A  e.  P
)
8 ishlg.b . . . 4  |-  ( ph  ->  B  e.  P )
98ad2antrr 762 . . 3  |-  ( ( ( ph  /\  y  e.  P )  /\  ( A  e.  ( D I y )  /\  A  =/=  y ) )  ->  B  e.  P
)
10 ishlg.c . . . 4  |-  ( ph  ->  C  e.  P )
1110ad2antrr 762 . . 3  |-  ( ( ( ph  /\  y  e.  P )  /\  ( A  e.  ( D I y )  /\  A  =/=  y ) )  ->  C  e.  P
)
12 simplr 792 . . 3  |-  ( ( ( ph  /\  y  e.  P )  /\  ( A  e.  ( D I y )  /\  A  =/=  y ) )  ->  y  e.  P
)
13 hlcgreulem.x . . . 4  |-  ( ph  ->  X  e.  P )
1413ad2antrr 762 . . 3  |-  ( ( ( ph  /\  y  e.  P )  /\  ( A  e.  ( D I y )  /\  A  =/=  y ) )  ->  X  e.  P
)
15 hlcgreulem.y . . . 4  |-  ( ph  ->  Y  e.  P )
1615ad2antrr 762 . . 3  |-  ( ( ( ph  /\  y  e.  P )  /\  ( A  e.  ( D I y )  /\  A  =/=  y ) )  ->  Y  e.  P
)
17 simprr 796 . . . 4  |-  ( ( ( ph  /\  y  e.  P )  /\  ( A  e.  ( D I y )  /\  A  =/=  y ) )  ->  A  =/=  y
)
1817necomd 2849 . . 3  |-  ( ( ( ph  /\  y  e.  P )  /\  ( A  e.  ( D I y )  /\  A  =/=  y ) )  ->  y  =/=  A
)
19 ishlg.k . . . . 5  |-  K  =  (hlG `  G )
20 hltr.d . . . . . 6  |-  ( ph  ->  D  e.  P )
2120ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  y  e.  P )  /\  ( A  e.  ( D I y )  /\  A  =/=  y ) )  ->  D  e.  P
)
22 hlcgreulem.1 . . . . . . 7  |-  ( ph  ->  X ( K `  A ) D )
231, 3, 19, 13, 20, 6, 4, 22hlcomd 25499 . . . . . 6  |-  ( ph  ->  D ( K `  A ) X )
2423ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  y  e.  P )  /\  ( A  e.  ( D I y )  /\  A  =/=  y ) )  ->  D ( K `
 A ) X )
25 simprl 794 . . . . 5  |-  ( ( ( ph  /\  y  e.  P )  /\  ( A  e.  ( D I y )  /\  A  =/=  y ) )  ->  A  e.  ( D I y ) )
261, 3, 19, 21, 14, 12, 5, 7, 24, 25btwnhl 25509 . . . 4  |-  ( ( ( ph  /\  y  e.  P )  /\  ( A  e.  ( D I y )  /\  A  =/=  y ) )  ->  A  e.  ( X I y ) )
271, 2, 3, 5, 14, 7, 12, 26tgbtwncom 25383 . . 3  |-  ( ( ( ph  /\  y  e.  P )  /\  ( A  e.  ( D I y )  /\  A  =/=  y ) )  ->  A  e.  ( y I X ) )
28 hlcgreulem.2 . . . . . . 7  |-  ( ph  ->  Y ( K `  A ) D )
291, 3, 19, 15, 20, 6, 4, 28hlcomd 25499 . . . . . 6  |-  ( ph  ->  D ( K `  A ) Y )
3029ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  y  e.  P )  /\  ( A  e.  ( D I y )  /\  A  =/=  y ) )  ->  D ( K `
 A ) Y )
311, 3, 19, 21, 16, 12, 5, 7, 30, 25btwnhl 25509 . . . 4  |-  ( ( ( ph  /\  y  e.  P )  /\  ( A  e.  ( D I y )  /\  A  =/=  y ) )  ->  A  e.  ( Y I y ) )
321, 2, 3, 5, 16, 7, 12, 31tgbtwncom 25383 . . 3  |-  ( ( ( ph  /\  y  e.  P )  /\  ( A  e.  ( D I y )  /\  A  =/=  y ) )  ->  A  e.  ( y I Y ) )
33 hlcgreulem.3 . . . 4  |-  ( ph  ->  ( A  .-  X
)  =  ( B 
.-  C ) )
3433ad2antrr 762 . . 3  |-  ( ( ( ph  /\  y  e.  P )  /\  ( A  e.  ( D I y )  /\  A  =/=  y ) )  ->  ( A  .-  X )  =  ( B  .-  C ) )
35 hlcgreulem.4 . . . 4  |-  ( ph  ->  ( A  .-  Y
)  =  ( B 
.-  C ) )
3635ad2antrr 762 . . 3  |-  ( ( ( ph  /\  y  e.  P )  /\  ( A  e.  ( D I y )  /\  A  =/=  y ) )  ->  ( A  .-  Y )  =  ( B  .-  C ) )
371, 2, 3, 5, 7, 9, 11, 12, 14, 16, 18, 27, 32, 34, 36tgsegconeq 25381 . 2  |-  ( ( ( ph  /\  y  e.  P )  /\  ( A  e.  ( D I y )  /\  A  =/=  y ) )  ->  X  =  Y )
38 fvex 6201 . . . . . 6  |-  ( Base `  G )  e.  _V
391, 38eqeltri 2697 . . . . 5  |-  P  e. 
_V
4039a1i 11 . . . 4  |-  ( ph  ->  P  e.  _V )
41 hlcgrex.2 . . . 4  |-  ( ph  ->  B  =/=  C )
4240, 8, 10, 41nehash2 13256 . . 3  |-  ( ph  ->  2  <_  ( # `  P
) )
431, 2, 3, 4, 20, 6, 42tgbtwndiff 25401 . 2  |-  ( ph  ->  E. y  e.  P  ( A  e.  ( D I y )  /\  A  =/=  y
) )
4437, 43r19.29a 3078 1  |-  ( ph  ->  X  =  Y )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   distcds 15950  TarskiGcstrkg 25329  Itvcitv 25335  hlGchlg 25495
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118  df-trkgc 25347  df-trkgb 25348  df-trkgcb 25349  df-trkg 25352  df-hlg 25496
This theorem is referenced by:  hlcgreu  25513  iscgra1  25702
  Copyright terms: Public domain W3C validator