| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > txcnpi | Structured version Visualization version Unicode version | ||
| Description: Continuity of a two-argument function at a point. (Contributed by Mario Carneiro, 20-Sep-2015.) |
| Ref | Expression |
|---|---|
| txcnpi.1 |
|
| txcnpi.2 |
|
| txcnpi.3 |
|
| txcnpi.4 |
|
| txcnpi.5 |
|
| txcnpi.6 |
|
| txcnpi.7 |
|
| Ref | Expression |
|---|---|
| txcnpi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | txcnpi.3 |
. . 3
| |
| 2 | txcnpi.4 |
. . 3
| |
| 3 | df-ov 6653 |
. . . 4
| |
| 4 | txcnpi.7 |
. . . 4
| |
| 5 | 3, 4 | syl5eqelr 2706 |
. . 3
|
| 6 | cnpimaex 21060 |
. . 3
| |
| 7 | 1, 2, 5, 6 | syl3anc 1326 |
. 2
|
| 8 | eqid 2622 |
. . . . . . . . . 10
| |
| 9 | eqid 2622 |
. . . . . . . . . 10
| |
| 10 | 8, 9 | cnpf 21051 |
. . . . . . . . 9
|
| 11 | 1, 10 | syl 17 |
. . . . . . . 8
|
| 12 | 11 | adantr 481 |
. . . . . . 7
|
| 13 | ffun 6048 |
. . . . . . 7
| |
| 14 | 12, 13 | syl 17 |
. . . . . 6
|
| 15 | elssuni 4467 |
. . . . . . 7
| |
| 16 | fdm 6051 |
. . . . . . . . . 10
| |
| 17 | 11, 16 | syl 17 |
. . . . . . . . 9
|
| 18 | 17 | sseq2d 3633 |
. . . . . . . 8
|
| 19 | 18 | biimpar 502 |
. . . . . . 7
|
| 20 | 15, 19 | sylan2 491 |
. . . . . 6
|
| 21 | funimass3 6333 |
. . . . . 6
| |
| 22 | 14, 20, 21 | syl2anc 693 |
. . . . 5
|
| 23 | 22 | anbi2d 740 |
. . . 4
|
| 24 | txcnpi.1 |
. . . . . . 7
| |
| 25 | txcnpi.2 |
. . . . . . 7
| |
| 26 | eltx 21371 |
. . . . . . 7
| |
| 27 | 24, 25, 26 | syl2anc 693 |
. . . . . 6
|
| 28 | 27 | biimpa 501 |
. . . . 5
|
| 29 | eleq1 2689 |
. . . . . . . . . 10
| |
| 30 | 29 | anbi1d 741 |
. . . . . . . . 9
|
| 31 | 30 | 2rexbidv 3057 |
. . . . . . . 8
|
| 32 | 31 | rspccv 3306 |
. . . . . . 7
|
| 33 | sstr2 3610 |
. . . . . . . . . . . . 13
| |
| 34 | 33 | com12 32 |
. . . . . . . . . . . 12
|
| 35 | 34 | anim2d 589 |
. . . . . . . . . . 11
|
| 36 | opelxp 5146 |
. . . . . . . . . . . 12
| |
| 37 | 36 | anbi1i 731 |
. . . . . . . . . . 11
|
| 38 | df-3an 1039 |
. . . . . . . . . . 11
| |
| 39 | 35, 37, 38 | 3imtr4g 285 |
. . . . . . . . . 10
|
| 40 | 39 | reximdv 3016 |
. . . . . . . . 9
|
| 41 | 40 | reximdv 3016 |
. . . . . . . 8
|
| 42 | 41 | com12 32 |
. . . . . . 7
|
| 43 | 32, 42 | syl6 35 |
. . . . . 6
|
| 44 | 43 | impd 447 |
. . . . 5
|
| 45 | 28, 44 | syl 17 |
. . . 4
|
| 46 | 23, 45 | sylbid 230 |
. . 3
|
| 47 | 46 | rexlimdva 3031 |
. 2
|
| 48 | 7, 47 | mpd 15 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-map 7859 df-topgen 16104 df-top 20699 df-topon 20716 df-cnp 21032 df-tx 21365 |
| This theorem is referenced by: tmdcn2 21893 |
| Copyright terms: Public domain | W3C validator |