| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > trclubgNEW | Structured version Visualization version Unicode version | ||
| Description: If a relation exists then the transitive closure has an upper bound. (Contributed by RP, 24-Jul-2020.) |
| Ref | Expression |
|---|---|
| trclubgNEW.rex |
|
| Ref | Expression |
|---|---|
| trclubgNEW |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trclubgNEW.rex |
. . 3
| |
| 2 | dmexg 7097 |
. . . . 5
| |
| 3 | 1, 2 | syl 17 |
. . . 4
|
| 4 | rnexg 7098 |
. . . . 5
| |
| 5 | 1, 4 | syl 17 |
. . . 4
|
| 6 | xpexg 6960 |
. . . 4
| |
| 7 | 3, 5, 6 | syl2anc 693 |
. . 3
|
| 8 | unexg 6959 |
. . 3
| |
| 9 | 1, 7, 8 | syl2anc 693 |
. 2
|
| 10 | id 22 |
. . . 4
| |
| 11 | 10, 10 | coeq12d 5286 |
. . 3
|
| 12 | 11, 10 | sseq12d 3634 |
. 2
|
| 13 | ssun1 3776 |
. . 3
| |
| 14 | 13 | a1i 11 |
. 2
|
| 15 | cnvssrndm 5657 |
. . 3
| |
| 16 | coundi 5636 |
. . . 4
| |
| 17 | cnvss 5294 |
. . . . . . . 8
| |
| 18 | coss2 5278 |
. . . . . . . 8
| |
| 19 | 17, 18 | syl 17 |
. . . . . . 7
|
| 20 | cocnvcnv2 5647 |
. . . . . . 7
| |
| 21 | cnvxp 5551 |
. . . . . . . 8
| |
| 22 | 21 | coeq2i 5282 |
. . . . . . 7
|
| 23 | 19, 20, 22 | 3sstr3g 3645 |
. . . . . 6
|
| 24 | ssequn1 3783 |
. . . . . 6
| |
| 25 | 23, 24 | sylib 208 |
. . . . 5
|
| 26 | coundir 5637 |
. . . . . 6
| |
| 27 | coss1 5277 |
. . . . . . . . . 10
| |
| 28 | 17, 27 | syl 17 |
. . . . . . . . 9
|
| 29 | cocnvcnv1 5646 |
. . . . . . . . 9
| |
| 30 | 21 | coeq1i 5281 |
. . . . . . . . 9
|
| 31 | 28, 29, 30 | 3sstr3g 3645 |
. . . . . . . 8
|
| 32 | ssequn1 3783 |
. . . . . . . 8
| |
| 33 | 31, 32 | sylib 208 |
. . . . . . 7
|
| 34 | xptrrel 13719 |
. . . . . . . . 9
| |
| 35 | ssun2 3777 |
. . . . . . . . 9
| |
| 36 | 34, 35 | sstri 3612 |
. . . . . . . 8
|
| 37 | 36 | a1i 11 |
. . . . . . 7
|
| 38 | 33, 37 | eqsstrd 3639 |
. . . . . 6
|
| 39 | 26, 38 | syl5eqss 3649 |
. . . . 5
|
| 40 | 25, 39 | eqsstrd 3639 |
. . . 4
|
| 41 | 16, 40 | syl5eqss 3649 |
. . 3
|
| 42 | 15, 41 | mp1i 13 |
. 2
|
| 43 | 9, 12, 14, 42 | clublem 37917 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-int 4476 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 |
| This theorem is referenced by: trclubNEW 37926 |
| Copyright terms: Public domain | W3C validator |