MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnpimaex Structured version   Visualization version   Unicode version

Theorem cnpimaex 21060
Description: Property of a function continuous at a point. (Contributed by FL, 31-Dec-2006.)
Assertion
Ref Expression
cnpimaex  |-  ( ( F  e.  ( ( J  CnP  K ) `
 P )  /\  A  e.  K  /\  ( F `  P )  e.  A )  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  A )
)
Distinct variable groups:    x, A    x, F    x, J    x, K    x, P

Proof of Theorem cnpimaex
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . . 6  |-  U. J  =  U. J
2 eqid 2622 . . . . . 6  |-  U. K  =  U. K
31, 2iscnp2 21043 . . . . 5  |-  ( F  e.  ( ( J  CnP  K ) `  P )  <->  ( ( J  e.  Top  /\  K  e.  Top  /\  P  e. 
U. J )  /\  ( F : U. J --> U. K  /\  A. y  e.  K  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) ) ) )
43simprbi 480 . . . 4  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  ( F : U. J --> U. K  /\  A. y  e.  K  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
) ) )
54simprd 479 . . 3  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  A. y  e.  K  ( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  y ) ) )
6 eleq2 2690 . . . . 5  |-  ( y  =  A  ->  (
( F `  P
)  e.  y  <->  ( F `  P )  e.  A
) )
7 sseq2 3627 . . . . . . 7  |-  ( y  =  A  ->  (
( F " x
)  C_  y  <->  ( F " x )  C_  A
) )
87anbi2d 740 . . . . . 6  |-  ( y  =  A  ->  (
( P  e.  x  /\  ( F " x
)  C_  y )  <->  ( P  e.  x  /\  ( F " x ) 
C_  A ) ) )
98rexbidv 3052 . . . . 5  |-  ( y  =  A  ->  ( E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )  <->  E. x  e.  J  ( P  e.  x  /\  ( F " x ) 
C_  A ) ) )
106, 9imbi12d 334 . . . 4  |-  ( y  =  A  ->  (
( ( F `  P )  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
)  <->  ( ( F `
 P )  e.  A  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  A ) ) ) )
1110rspccv 3306 . . 3  |-  ( A. y  e.  K  (
( F `  P
)  e.  y  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  y )
)  ->  ( A  e.  K  ->  ( ( F `  P )  e.  A  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x )  C_  A ) ) ) )
125, 11syl 17 . 2  |-  ( F  e.  ( ( J  CnP  K ) `  P )  ->  ( A  e.  K  ->  ( ( F `  P
)  e.  A  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  A )
) ) )
13123imp 1256 1  |-  ( ( F  e.  ( ( J  CnP  K ) `
 P )  /\  A  e.  K  /\  ( F `  P )  e.  A )  ->  E. x  e.  J  ( P  e.  x  /\  ( F " x
)  C_  A )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    C_ wss 3574   U.cuni 4436   "cima 5117   -->wf 5884   ` cfv 5888  (class class class)co 6650   Topctop 20698    CnP ccnp 21029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-top 20699  df-topon 20716  df-cnp 21032
This theorem is referenced by:  iscnp4  21067  cnpnei  21068  cnpco  21071  cncnp  21084  cnpresti  21092  lmcnp  21108  txcnpi  21411  txcnp  21423  ptcnplem  21424  cnpflfi  21803  ghmcnp  21918  xrlimcnp  24695  cnambfre  33458
  Copyright terms: Public domain W3C validator