| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tx1cn | Structured version Visualization version Unicode version | ||
| Description: Continuity of the first projection map of a topological product. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.) |
| Ref | Expression |
|---|---|
| tx1cn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1stres 7190 |
. . 3
| |
| 2 | 1 | a1i 11 |
. 2
|
| 3 | toponss 20731 |
. . . . . . . . . 10
| |
| 4 | 3 | adantlr 751 |
. . . . . . . . 9
|
| 5 | xpss1 5228 |
. . . . . . . . 9
| |
| 6 | 4, 5 | syl 17 |
. . . . . . . 8
|
| 7 | 6 | sseld 3602 |
. . . . . . 7
|
| 8 | 7 | pm4.71rd 667 |
. . . . . 6
|
| 9 | ffn 6045 |
. . . . . . . 8
| |
| 10 | elpreima 6337 |
. . . . . . . 8
| |
| 11 | 1, 9, 10 | mp2b 10 |
. . . . . . 7
|
| 12 | fvres 6207 |
. . . . . . . . . 10
| |
| 13 | 12 | eleq1d 2686 |
. . . . . . . . 9
|
| 14 | 1st2nd2 7205 |
. . . . . . . . . 10
| |
| 15 | xp2nd 7199 |
. . . . . . . . . 10
| |
| 16 | elxp6 7200 |
. . . . . . . . . . . 12
| |
| 17 | anass 681 |
. . . . . . . . . . . 12
| |
| 18 | an32 839 |
. . . . . . . . . . . 12
| |
| 19 | 16, 17, 18 | 3bitr2i 288 |
. . . . . . . . . . 11
|
| 20 | 19 | baib 944 |
. . . . . . . . . 10
|
| 21 | 14, 15, 20 | syl2anc 693 |
. . . . . . . . 9
|
| 22 | 13, 21 | bitr4d 271 |
. . . . . . . 8
|
| 23 | 22 | pm5.32i 669 |
. . . . . . 7
|
| 24 | 11, 23 | bitri 264 |
. . . . . 6
|
| 25 | 8, 24 | syl6rbbr 279 |
. . . . 5
|
| 26 | 25 | eqrdv 2620 |
. . . 4
|
| 27 | toponmax 20730 |
. . . . . 6
| |
| 28 | 27 | ad2antlr 763 |
. . . . 5
|
| 29 | txopn 21405 |
. . . . . 6
| |
| 30 | 29 | anassrs 680 |
. . . . 5
|
| 31 | 28, 30 | mpdan 702 |
. . . 4
|
| 32 | 26, 31 | eqeltrd 2701 |
. . 3
|
| 33 | 32 | ralrimiva 2966 |
. 2
|
| 34 | txtopon 21394 |
. . 3
| |
| 35 | simpl 473 |
. . 3
| |
| 36 | iscn 21039 |
. . 3
| |
| 37 | 34, 35, 36 | syl2anc 693 |
. 2
|
| 38 | 2, 33, 37 | mpbir2and 957 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-1st 7168 df-2nd 7169 df-map 7859 df-topgen 16104 df-top 20699 df-topon 20716 df-bases 20750 df-cn 21031 df-tx 21365 |
| This theorem is referenced by: txcn 21429 txcmpb 21447 cnmpt1st 21471 sxbrsiga 30352 txsconnlem 31222 txsconn 31223 hausgraph 37790 |
| Copyright terms: Public domain | W3C validator |