MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txswaphmeo Structured version   Visualization version   Unicode version

Theorem txswaphmeo 21608
Description: There is a homeomorphism from  X  X.  Y to  Y  X.  X. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
txswaphmeo  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. )  e.  ( ( J  tX  K )
Homeo ( K  tX  J
) ) )
Distinct variable groups:    x, y, J    x, K, y    x, X, y    x, Y, y

Proof of Theorem txswaphmeo
StepHypRef Expression
1 simpl 473 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  J  e.  (TopOn `  X ) )
2 simpr 477 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  K  e.  (TopOn `  Y ) )
31, 2cnmpt2nd 21472 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( x  e.  X ,  y  e.  Y  |->  y )  e.  ( ( J  tX  K )  Cn  K
) )
41, 2cnmpt1st 21471 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( x  e.  X ,  y  e.  Y  |->  x )  e.  ( ( J  tX  K )  Cn  J
) )
51, 2, 3, 4cnmpt2t 21476 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. )  e.  ( ( J  tX  K )  Cn  ( K  tX  J ) ) )
6 opelxpi 5148 . . . . . . . . 9  |-  ( ( y  e.  Y  /\  x  e.  X )  -> 
<. y ,  x >.  e.  ( Y  X.  X
) )
76ancoms 469 . . . . . . . 8  |-  ( ( x  e.  X  /\  y  e.  Y )  -> 
<. y ,  x >.  e.  ( Y  X.  X
) )
87adantl 482 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( x  e.  X  /\  y  e.  Y ) )  ->  <. y ,  x >.  e.  ( Y  X.  X
) )
98ralrimivva 2971 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  A. x  e.  X  A. y  e.  Y  <. y ,  x >.  e.  ( Y  X.  X ) )
10 eqid 2622 . . . . . . 7  |-  ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. )  =  ( x  e.  X , 
y  e.  Y  |->  <.
y ,  x >. )
1110fmpt2 7237 . . . . . 6  |-  ( A. x  e.  X  A. y  e.  Y  <. y ,  x >.  e.  ( Y  X.  X )  <-> 
( x  e.  X ,  y  e.  Y  |-> 
<. y ,  x >. ) : ( X  X.  Y ) --> ( Y  X.  X ) )
129, 11sylib 208 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. ) : ( X  X.  Y ) --> ( Y  X.  X ) )
13 opelxpi 5148 . . . . . . . . 9  |-  ( ( x  e.  X  /\  y  e.  Y )  -> 
<. x ,  y >.  e.  ( X  X.  Y
) )
1413ancoms 469 . . . . . . . 8  |-  ( ( y  e.  Y  /\  x  e.  X )  -> 
<. x ,  y >.  e.  ( X  X.  Y
) )
1514adantl 482 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  /\  ( y  e.  Y  /\  x  e.  X ) )  ->  <. x ,  y >.  e.  ( X  X.  Y
) )
1615ralrimivva 2971 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  A. y  e.  Y  A. x  e.  X  <. x ,  y >.  e.  ( X  X.  Y ) )
17 eqid 2622 . . . . . . 7  |-  ( y  e.  Y ,  x  e.  X  |->  <. x ,  y >. )  =  ( y  e.  Y ,  x  e.  X  |->  <. x ,  y
>. )
1817fmpt2 7237 . . . . . 6  |-  ( A. y  e.  Y  A. x  e.  X  <. x ,  y >.  e.  ( X  X.  Y )  <-> 
( y  e.  Y ,  x  e.  X  |-> 
<. x ,  y >.
) : ( Y  X.  X ) --> ( X  X.  Y ) )
1916, 18sylib 208 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( y  e.  Y ,  x  e.  X  |->  <. x ,  y
>. ) : ( Y  X.  X ) --> ( X  X.  Y ) )
20 txswaphmeolem 21607 . . . . . 6  |-  ( ( x  e.  X , 
y  e.  Y  |->  <.
y ,  x >. )  o.  ( y  e.  Y ,  x  e.  X  |->  <. x ,  y
>. ) )  =  (  _I  |`  ( Y  X.  X ) )
21 txswaphmeolem 21607 . . . . . 6  |-  ( ( y  e.  Y ,  x  e.  X  |->  <.
x ,  y >.
)  o.  ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. ) )  =  (  _I  |`  ( X  X.  Y ) )
22 fcof1o 6551 . . . . . 6  |-  ( ( ( ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. ) : ( X  X.  Y ) --> ( Y  X.  X )  /\  ( y  e.  Y ,  x  e.  X  |->  <. x ,  y
>. ) : ( Y  X.  X ) --> ( X  X.  Y ) )  /\  ( ( ( x  e.  X ,  y  e.  Y  |-> 
<. y ,  x >. )  o.  ( y  e.  Y ,  x  e.  X  |->  <. x ,  y
>. ) )  =  (  _I  |`  ( Y  X.  X ) )  /\  ( ( y  e.  Y ,  x  e.  X  |->  <. x ,  y
>. )  o.  (
x  e.  X , 
y  e.  Y  |->  <.
y ,  x >. ) )  =  (  _I  |`  ( X  X.  Y
) ) ) )  ->  ( ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. ) : ( X  X.  Y ) -1-1-onto-> ( Y  X.  X )  /\  `' ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. )  =  ( y  e.  Y ,  x  e.  X  |->  <.
x ,  y >.
) ) )
2320, 21, 22mpanr12 721 . . . . 5  |-  ( ( ( x  e.  X ,  y  e.  Y  |-> 
<. y ,  x >. ) : ( X  X.  Y ) --> ( Y  X.  X )  /\  ( y  e.  Y ,  x  e.  X  |-> 
<. x ,  y >.
) : ( Y  X.  X ) --> ( X  X.  Y ) )  ->  ( (
x  e.  X , 
y  e.  Y  |->  <.
y ,  x >. ) : ( X  X.  Y ) -1-1-onto-> ( Y  X.  X
)  /\  `' (
x  e.  X , 
y  e.  Y  |->  <.
y ,  x >. )  =  ( y  e.  Y ,  x  e.  X  |->  <. x ,  y
>. ) ) )
2412, 19, 23syl2anc 693 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( (
x  e.  X , 
y  e.  Y  |->  <.
y ,  x >. ) : ( X  X.  Y ) -1-1-onto-> ( Y  X.  X
)  /\  `' (
x  e.  X , 
y  e.  Y  |->  <.
y ,  x >. )  =  ( y  e.  Y ,  x  e.  X  |->  <. x ,  y
>. ) ) )
2524simprd 479 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  `' (
x  e.  X , 
y  e.  Y  |->  <.
y ,  x >. )  =  ( y  e.  Y ,  x  e.  X  |->  <. x ,  y
>. ) )
262, 1cnmpt2nd 21472 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( y  e.  Y ,  x  e.  X  |->  x )  e.  ( ( K  tX  J )  Cn  J
) )
272, 1cnmpt1st 21471 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( y  e.  Y ,  x  e.  X  |->  y )  e.  ( ( K  tX  J )  Cn  K
) )
282, 1, 26, 27cnmpt2t 21476 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( y  e.  Y ,  x  e.  X  |->  <. x ,  y
>. )  e.  (
( K  tX  J
)  Cn  ( J 
tX  K ) ) )
2925, 28eqeltrd 2701 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  `' (
x  e.  X , 
y  e.  Y  |->  <.
y ,  x >. )  e.  ( ( K 
tX  J )  Cn  ( J  tX  K
) ) )
30 ishmeo 21562 . 2  |-  ( ( x  e.  X , 
y  e.  Y  |->  <.
y ,  x >. )  e.  ( ( J 
tX  K ) Homeo ( K  tX  J ) )  <->  ( ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. )  e.  ( ( J  tX  K
)  Cn  ( K 
tX  J ) )  /\  `' ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. )  e.  ( ( K  tX  J
)  Cn  ( J 
tX  K ) ) ) )
315, 29, 30sylanbrc 698 1  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. )  e.  ( ( J  tX  K )
Homeo ( K  tX  J
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   <.cop 4183    _I cid 5023    X. cxp 5112   `'ccnv 5113    |` cres 5116    o. ccom 5118   -->wf 5884   -1-1-onto->wf1o 5887   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652  TopOnctopon 20715    Cn ccn 21028    tX ctx 21363   Homeochmeo 21556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-cn 21031  df-tx 21365  df-hmeo 21558
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator