MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txswaphmeolem Structured version   Visualization version   Unicode version

Theorem txswaphmeolem 21607
Description: Show inverse for the "swap components" operation on a Cartesian product. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
txswaphmeolem  |-  ( ( y  e.  Y ,  x  e.  X  |->  <.
x ,  y >.
)  o.  ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. ) )  =  (  _I  |`  ( X  X.  Y ) )
Distinct variable groups:    x, y, X    x, Y, y

Proof of Theorem txswaphmeolem
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 opelxpi 5148 . . . . . 6  |-  ( ( y  e.  Y  /\  x  e.  X )  -> 
<. y ,  x >.  e.  ( Y  X.  X
) )
21ancoms 469 . . . . 5  |-  ( ( x  e.  X  /\  y  e.  Y )  -> 
<. y ,  x >.  e.  ( Y  X.  X
) )
32adantl 482 . . . 4  |-  ( ( T.  /\  ( x  e.  X  /\  y  e.  Y ) )  ->  <. y ,  x >.  e.  ( Y  X.  X
) )
4 eqidd 2623 . . . 4  |-  ( T. 
->  ( x  e.  X ,  y  e.  Y  |-> 
<. y ,  x >. )  =  ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. ) )
5 sneq 4187 . . . . . . . . . 10  |-  ( z  =  <. y ,  x >.  ->  { z }  =  { <. y ,  x >. } )
65cnveqd 5298 . . . . . . . . 9  |-  ( z  =  <. y ,  x >.  ->  `' { z }  =  `' { <. y ,  x >. } )
76unieqd 4446 . . . . . . . 8  |-  ( z  =  <. y ,  x >.  ->  U. `' { z }  =  U. `' { <. y ,  x >. } )
8 opswap 5622 . . . . . . . 8  |-  U. `' { <. y ,  x >. }  =  <. x ,  y >.
97, 8syl6eq 2672 . . . . . . 7  |-  ( z  =  <. y ,  x >.  ->  U. `' { z }  =  <. x ,  y >. )
109mpt2mpt 6752 . . . . . 6  |-  ( z  e.  ( Y  X.  X )  |->  U. `' { z } )  =  ( y  e.  Y ,  x  e.  X  |->  <. x ,  y
>. )
1110eqcomi 2631 . . . . 5  |-  ( y  e.  Y ,  x  e.  X  |->  <. x ,  y >. )  =  ( z  e.  ( Y  X.  X
)  |->  U. `' { z } )
1211a1i 11 . . . 4  |-  ( T. 
->  ( y  e.  Y ,  x  e.  X  |-> 
<. x ,  y >.
)  =  ( z  e.  ( Y  X.  X )  |->  U. `' { z } ) )
133, 4, 12, 9fmpt2co 7260 . . 3  |-  ( T. 
->  ( ( y  e.  Y ,  x  e.  X  |->  <. x ,  y
>. )  o.  (
x  e.  X , 
y  e.  Y  |->  <.
y ,  x >. ) )  =  ( x  e.  X ,  y  e.  Y  |->  <. x ,  y >. )
)
1413trud 1493 . 2  |-  ( ( y  e.  Y ,  x  e.  X  |->  <.
x ,  y >.
)  o.  ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. ) )  =  ( x  e.  X ,  y  e.  Y  |-> 
<. x ,  y >.
)
15 id 22 . . 3  |-  ( z  =  <. x ,  y
>.  ->  z  =  <. x ,  y >. )
1615mpt2mpt 6752 . 2  |-  ( z  e.  ( X  X.  Y )  |->  z )  =  ( x  e.  X ,  y  e.  Y  |->  <. x ,  y
>. )
17 mptresid 5456 . 2  |-  ( z  e.  ( X  X.  Y )  |->  z )  =  (  _I  |`  ( X  X.  Y ) )
1814, 16, 173eqtr2i 2650 1  |-  ( ( y  e.  Y ,  x  e.  X  |->  <.
x ,  y >.
)  o.  ( x  e.  X ,  y  e.  Y  |->  <. y ,  x >. ) )  =  (  _I  |`  ( X  X.  Y ) )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    = wceq 1483   T. wtru 1484    e. wcel 1990   {csn 4177   <.cop 4183   U.cuni 4436    |-> cmpt 4729    _I cid 5023    X. cxp 5112   `'ccnv 5113    |` cres 5116    o. ccom 5118    |-> cmpt2 6652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169
This theorem is referenced by:  txswaphmeo  21608
  Copyright terms: Public domain W3C validator