MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snfbas Structured version   Visualization version   Unicode version

Theorem snfbas 21670
Description: Condition for a singleton to be a filter base. (Contributed by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
snfbas  |-  ( ( A  C_  B  /\  A  =/=  (/)  /\  B  e.  V )  ->  { A }  e.  ( fBas `  B ) )

Proof of Theorem snfbas
StepHypRef Expression
1 ssexg 4804 . . . . 5  |-  ( ( A  C_  B  /\  B  e.  V )  ->  A  e.  _V )
213adant2 1080 . . . 4  |-  ( ( A  C_  B  /\  A  =/=  (/)  /\  B  e.  V )  ->  A  e.  _V )
3 simp2 1062 . . . 4  |-  ( ( A  C_  B  /\  A  =/=  (/)  /\  B  e.  V )  ->  A  =/=  (/) )
4 snfil 21668 . . . 4  |-  ( ( A  e.  _V  /\  A  =/=  (/) )  ->  { A }  e.  ( Fil `  A ) )
52, 3, 4syl2anc 693 . . 3  |-  ( ( A  C_  B  /\  A  =/=  (/)  /\  B  e.  V )  ->  { A }  e.  ( Fil `  A ) )
6 filfbas 21652 . . 3  |-  ( { A }  e.  ( Fil `  A )  ->  { A }  e.  ( fBas `  A
) )
75, 6syl 17 . 2  |-  ( ( A  C_  B  /\  A  =/=  (/)  /\  B  e.  V )  ->  { A }  e.  ( fBas `  A ) )
8 simp1 1061 . . . 4  |-  ( ( A  C_  B  /\  A  =/=  (/)  /\  B  e.  V )  ->  A  C_  B )
9 elpw2g 4827 . . . . 5  |-  ( B  e.  V  ->  ( A  e.  ~P B  <->  A 
C_  B ) )
1093ad2ant3 1084 . . . 4  |-  ( ( A  C_  B  /\  A  =/=  (/)  /\  B  e.  V )  ->  ( A  e.  ~P B  <->  A 
C_  B ) )
118, 10mpbird 247 . . 3  |-  ( ( A  C_  B  /\  A  =/=  (/)  /\  B  e.  V )  ->  A  e.  ~P B )
1211snssd 4340 . 2  |-  ( ( A  C_  B  /\  A  =/=  (/)  /\  B  e.  V )  ->  { A }  C_  ~P B )
13 simp3 1063 . 2  |-  ( ( A  C_  B  /\  A  =/=  (/)  /\  B  e.  V )  ->  B  e.  V )
14 fbasweak 21669 . 2  |-  ( ( { A }  e.  ( fBas `  A )  /\  { A }  C_  ~P B  /\  B  e.  V )  ->  { A }  e.  ( fBas `  B ) )
157, 12, 13, 14syl3anc 1326 1  |-  ( ( A  C_  B  /\  A  =/=  (/)  /\  B  e.  V )  ->  { A }  e.  ( fBas `  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ w3a 1037    e. wcel 1990    =/= wne 2794   _Vcvv 3200    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   ` cfv 5888   fBascfbas 19734   Filcfil 21649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-fbas 19743  df-fil 21650
This theorem is referenced by:  isufil2  21712  ufileu  21723  filufint  21724  uffix  21725  flimclslem  21788
  Copyright terms: Public domain W3C validator