MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmss Structured version   Visualization version   Unicode version

Theorem ulmss 24151
Description: A uniform limit of functions is still a uniform limit if restricted to a subset. (Contributed by Mario Carneiro, 3-Mar-2015.)
Hypotheses
Ref Expression
ulmss.z  |-  Z  =  ( ZZ>= `  M )
ulmss.t  |-  ( ph  ->  T  C_  S )
ulmss.a  |-  ( (
ph  /\  x  e.  Z )  ->  A  e.  W )
ulmss.u  |-  ( ph  ->  ( x  e.  Z  |->  A ) ( ~~> u `  S ) G )
Assertion
Ref Expression
ulmss  |-  ( ph  ->  ( x  e.  Z  |->  ( A  |`  T ) ) ( ~~> u `  T ) ( G  |`  T ) )
Distinct variable groups:    x, T    ph, x    x, S    x, Z
Allowed substitution hints:    A( x)    G( x)    M( x)    W( x)

Proof of Theorem ulmss
Dummy variables  j 
k  m  r  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ulmss.u . 2  |-  ( ph  ->  ( x  e.  Z  |->  A ) ( ~~> u `  S ) G )
2 ulmss.z . . . . . . . . 9  |-  Z  =  ( ZZ>= `  M )
32uztrn2 11705 . . . . . . . 8  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
4 ulmss.t . . . . . . . . . . 11  |-  ( ph  ->  T  C_  S )
54adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  Z )  ->  T  C_  S )
6 ssralv 3666 . . . . . . . . . 10  |-  ( T 
C_  S  ->  ( A. z  e.  S  ( abs `  ( ( ( ( x  e.  Z  |->  A ) `  k ) `  z
)  -  ( G `
 z ) ) )  <  r  ->  A. z  e.  T  ( abs `  ( ( ( ( x  e.  Z  |->  A ) `  k ) `  z
)  -  ( G `
 z ) ) )  <  r ) )
75, 6syl 17 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  Z )  ->  ( A. z  e.  S  ( abs `  ( ( ( ( x  e.  Z  |->  A ) `  k ) `  z
)  -  ( G `
 z ) ) )  <  r  ->  A. z  e.  T  ( abs `  ( ( ( ( x  e.  Z  |->  A ) `  k ) `  z
)  -  ( G `
 z ) ) )  <  r ) )
8 fvres 6207 . . . . . . . . . . . . . . 15  |-  ( z  e.  T  ->  (
( A  |`  T ) `
 z )  =  ( A `  z
) )
98ad2antll 765 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  Z  /\  z  e.  T ) )  -> 
( ( A  |`  T ) `  z
)  =  ( A `
 z ) )
10 simprl 794 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  Z  /\  z  e.  T ) )  ->  x  e.  Z )
11 ulmss.a . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  Z )  ->  A  e.  W )
1211adantrr 753 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( x  e.  Z  /\  z  e.  T ) )  ->  A  e.  W )
13 resexg 5442 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  W  ->  ( A  |`  T )  e. 
_V )
1412, 13syl 17 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  Z  /\  z  e.  T ) )  -> 
( A  |`  T )  e.  _V )
15 eqid 2622 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  Z  |->  ( A  |`  T ) )  =  ( x  e.  Z  |->  ( A  |`  T ) )
1615fvmpt2 6291 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  Z  /\  ( A  |`  T )  e.  _V )  -> 
( ( x  e.  Z  |->  ( A  |`  T ) ) `  x )  =  ( A  |`  T )
)
1710, 14, 16syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  Z  /\  z  e.  T ) )  -> 
( ( x  e.  Z  |->  ( A  |`  T ) ) `  x )  =  ( A  |`  T )
)
1817fveq1d 6193 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  Z  /\  z  e.  T ) )  -> 
( ( ( x  e.  Z  |->  ( A  |`  T ) ) `  x ) `  z
)  =  ( ( A  |`  T ) `  z ) )
19 eqid 2622 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  Z  |->  A )  =  ( x  e.  Z  |->  A )
2019fvmpt2 6291 . . . . . . . . . . . . . . . 16  |-  ( ( x  e.  Z  /\  A  e.  W )  ->  ( ( x  e.  Z  |->  A ) `  x )  =  A )
2110, 12, 20syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  Z  /\  z  e.  T ) )  -> 
( ( x  e.  Z  |->  A ) `  x )  =  A )
2221fveq1d 6193 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  Z  /\  z  e.  T ) )  -> 
( ( ( x  e.  Z  |->  A ) `
 x ) `  z )  =  ( A `  z ) )
239, 18, 223eqtr4d 2666 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  Z  /\  z  e.  T ) )  -> 
( ( ( x  e.  Z  |->  ( A  |`  T ) ) `  x ) `  z
)  =  ( ( ( x  e.  Z  |->  A ) `  x
) `  z )
)
2423ralrimivva 2971 . . . . . . . . . . . 12  |-  ( ph  ->  A. x  e.  Z  A. z  e.  T  ( ( ( x  e.  Z  |->  ( A  |`  T ) ) `  x ) `  z
)  =  ( ( ( x  e.  Z  |->  A ) `  x
) `  z )
)
25 nfv 1843 . . . . . . . . . . . . 13  |-  F/ k A. z  e.  T  ( ( ( x  e.  Z  |->  ( A  |`  T ) ) `  x ) `  z
)  =  ( ( ( x  e.  Z  |->  A ) `  x
) `  z )
26 nfcv 2764 . . . . . . . . . . . . . 14  |-  F/_ x T
27 nffvmpt1 6199 . . . . . . . . . . . . . . . 16  |-  F/_ x
( ( x  e.  Z  |->  ( A  |`  T ) ) `  k )
28 nfcv 2764 . . . . . . . . . . . . . . . 16  |-  F/_ x
z
2927, 28nffv 6198 . . . . . . . . . . . . . . 15  |-  F/_ x
( ( ( x  e.  Z  |->  ( A  |`  T ) ) `  k ) `  z
)
30 nffvmpt1 6199 . . . . . . . . . . . . . . . 16  |-  F/_ x
( ( x  e.  Z  |->  A ) `  k )
3130, 28nffv 6198 . . . . . . . . . . . . . . 15  |-  F/_ x
( ( ( x  e.  Z  |->  A ) `
 k ) `  z )
3229, 31nfeq 2776 . . . . . . . . . . . . . 14  |-  F/ x
( ( ( x  e.  Z  |->  ( A  |`  T ) ) `  k ) `  z
)  =  ( ( ( x  e.  Z  |->  A ) `  k
) `  z )
3326, 32nfral 2945 . . . . . . . . . . . . 13  |-  F/ x A. z  e.  T  ( ( ( x  e.  Z  |->  ( A  |`  T ) ) `  k ) `  z
)  =  ( ( ( x  e.  Z  |->  A ) `  k
) `  z )
34 fveq2 6191 . . . . . . . . . . . . . . . 16  |-  ( x  =  k  ->  (
( x  e.  Z  |->  ( A  |`  T ) ) `  x )  =  ( ( x  e.  Z  |->  ( A  |`  T ) ) `  k ) )
3534fveq1d 6193 . . . . . . . . . . . . . . 15  |-  ( x  =  k  ->  (
( ( x  e.  Z  |->  ( A  |`  T ) ) `  x ) `  z
)  =  ( ( ( x  e.  Z  |->  ( A  |`  T ) ) `  k ) `
 z ) )
36 fveq2 6191 . . . . . . . . . . . . . . . 16  |-  ( x  =  k  ->  (
( x  e.  Z  |->  A ) `  x
)  =  ( ( x  e.  Z  |->  A ) `  k ) )
3736fveq1d 6193 . . . . . . . . . . . . . . 15  |-  ( x  =  k  ->  (
( ( x  e.  Z  |->  A ) `  x ) `  z
)  =  ( ( ( x  e.  Z  |->  A ) `  k
) `  z )
)
3835, 37eqeq12d 2637 . . . . . . . . . . . . . 14  |-  ( x  =  k  ->  (
( ( ( x  e.  Z  |->  ( A  |`  T ) ) `  x ) `  z
)  =  ( ( ( x  e.  Z  |->  A ) `  x
) `  z )  <->  ( ( ( x  e.  Z  |->  ( A  |`  T ) ) `  k ) `  z
)  =  ( ( ( x  e.  Z  |->  A ) `  k
) `  z )
) )
3938ralbidv 2986 . . . . . . . . . . . . 13  |-  ( x  =  k  ->  ( A. z  e.  T  ( ( ( x  e.  Z  |->  ( A  |`  T ) ) `  x ) `  z
)  =  ( ( ( x  e.  Z  |->  A ) `  x
) `  z )  <->  A. z  e.  T  ( ( ( x  e.  Z  |->  ( A  |`  T ) ) `  k ) `  z
)  =  ( ( ( x  e.  Z  |->  A ) `  k
) `  z )
) )
4025, 33, 39cbvral 3167 . . . . . . . . . . . 12  |-  ( A. x  e.  Z  A. z  e.  T  (
( ( x  e.  Z  |->  ( A  |`  T ) ) `  x ) `  z
)  =  ( ( ( x  e.  Z  |->  A ) `  x
) `  z )  <->  A. k  e.  Z  A. z  e.  T  (
( ( x  e.  Z  |->  ( A  |`  T ) ) `  k ) `  z
)  =  ( ( ( x  e.  Z  |->  A ) `  k
) `  z )
)
4124, 40sylib 208 . . . . . . . . . . 11  |-  ( ph  ->  A. k  e.  Z  A. z  e.  T  ( ( ( x  e.  Z  |->  ( A  |`  T ) ) `  k ) `  z
)  =  ( ( ( x  e.  Z  |->  A ) `  k
) `  z )
)
4241r19.21bi 2932 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  Z )  ->  A. z  e.  T  ( (
( x  e.  Z  |->  ( A  |`  T ) ) `  k ) `
 z )  =  ( ( ( x  e.  Z  |->  A ) `
 k ) `  z ) )
43 oveq1 6657 . . . . . . . . . . . . 13  |-  ( ( ( ( x  e.  Z  |->  ( A  |`  T ) ) `  k ) `  z
)  =  ( ( ( x  e.  Z  |->  A ) `  k
) `  z )  ->  ( ( ( ( x  e.  Z  |->  ( A  |`  T )
) `  k ) `  z )  -  ( G `  z )
)  =  ( ( ( ( x  e.  Z  |->  A ) `  k ) `  z
)  -  ( G `
 z ) ) )
4443fveq2d 6195 . . . . . . . . . . . 12  |-  ( ( ( ( x  e.  Z  |->  ( A  |`  T ) ) `  k ) `  z
)  =  ( ( ( x  e.  Z  |->  A ) `  k
) `  z )  ->  ( abs `  (
( ( ( x  e.  Z  |->  ( A  |`  T ) ) `  k ) `  z
)  -  ( G `
 z ) ) )  =  ( abs `  ( ( ( ( x  e.  Z  |->  A ) `  k ) `
 z )  -  ( G `  z ) ) ) )
4544breq1d 4663 . . . . . . . . . . 11  |-  ( ( ( ( x  e.  Z  |->  ( A  |`  T ) ) `  k ) `  z
)  =  ( ( ( x  e.  Z  |->  A ) `  k
) `  z )  ->  ( ( abs `  (
( ( ( x  e.  Z  |->  ( A  |`  T ) ) `  k ) `  z
)  -  ( G `
 z ) ) )  <  r  <->  ( abs `  ( ( ( ( x  e.  Z  |->  A ) `  k ) `
 z )  -  ( G `  z ) ) )  <  r
) )
4645ralimi 2952 . . . . . . . . . 10  |-  ( A. z  e.  T  (
( ( x  e.  Z  |->  ( A  |`  T ) ) `  k ) `  z
)  =  ( ( ( x  e.  Z  |->  A ) `  k
) `  z )  ->  A. z  e.  T  ( ( abs `  (
( ( ( x  e.  Z  |->  ( A  |`  T ) ) `  k ) `  z
)  -  ( G `
 z ) ) )  <  r  <->  ( abs `  ( ( ( ( x  e.  Z  |->  A ) `  k ) `
 z )  -  ( G `  z ) ) )  <  r
) )
47 ralbi 3068 . . . . . . . . . 10  |-  ( A. z  e.  T  (
( abs `  (
( ( ( x  e.  Z  |->  ( A  |`  T ) ) `  k ) `  z
)  -  ( G `
 z ) ) )  <  r  <->  ( abs `  ( ( ( ( x  e.  Z  |->  A ) `  k ) `
 z )  -  ( G `  z ) ) )  <  r
)  ->  ( A. z  e.  T  ( abs `  ( ( ( ( x  e.  Z  |->  ( A  |`  T ) ) `  k ) `
 z )  -  ( G `  z ) ) )  <  r  <->  A. z  e.  T  ( abs `  ( ( ( ( x  e.  Z  |->  A ) `  k ) `  z
)  -  ( G `
 z ) ) )  <  r ) )
4842, 46, 473syl 18 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  Z )  ->  ( A. z  e.  T  ( abs `  ( ( ( ( x  e.  Z  |->  ( A  |`  T ) ) `  k ) `  z
)  -  ( G `
 z ) ) )  <  r  <->  A. z  e.  T  ( abs `  ( ( ( ( x  e.  Z  |->  A ) `  k ) `
 z )  -  ( G `  z ) ) )  <  r
) )
497, 48sylibrd 249 . . . . . . . 8  |-  ( (
ph  /\  k  e.  Z )  ->  ( A. z  e.  S  ( abs `  ( ( ( ( x  e.  Z  |->  A ) `  k ) `  z
)  -  ( G `
 z ) ) )  <  r  ->  A. z  e.  T  ( abs `  ( ( ( ( x  e.  Z  |->  ( A  |`  T ) ) `  k ) `  z
)  -  ( G `
 z ) ) )  <  r ) )
503, 49sylan2 491 . . . . . . 7  |-  ( (
ph  /\  ( j  e.  Z  /\  k  e.  ( ZZ>= `  j )
) )  ->  ( A. z  e.  S  ( abs `  ( ( ( ( x  e.  Z  |->  A ) `  k ) `  z
)  -  ( G `
 z ) ) )  <  r  ->  A. z  e.  T  ( abs `  ( ( ( ( x  e.  Z  |->  ( A  |`  T ) ) `  k ) `  z
)  -  ( G `
 z ) ) )  <  r ) )
5150anassrs 680 . . . . . 6  |-  ( ( ( ph  /\  j  e.  Z )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( A. z  e.  S  ( abs `  ( ( ( ( x  e.  Z  |->  A ) `  k
) `  z )  -  ( G `  z ) ) )  <  r  ->  A. z  e.  T  ( abs `  ( ( ( ( x  e.  Z  |->  ( A  |`  T )
) `  k ) `  z )  -  ( G `  z )
) )  <  r
) )
5251ralimdva 2962 . . . . 5  |-  ( (
ph  /\  j  e.  Z )  ->  ( A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( ( x  e.  Z  |->  A ) `  k
) `  z )  -  ( G `  z ) ) )  <  r  ->  A. k  e.  ( ZZ>= `  j ) A. z  e.  T  ( abs `  ( ( ( ( x  e.  Z  |->  ( A  |`  T ) ) `  k ) `  z
)  -  ( G `
 z ) ) )  <  r ) )
5352reximdva 3017 . . . 4  |-  ( ph  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( ( x  e.  Z  |->  A ) `  k ) `  z
)  -  ( G `
 z ) ) )  <  r  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) A. z  e.  T  ( abs `  ( ( ( ( x  e.  Z  |->  ( A  |`  T ) ) `  k ) `
 z )  -  ( G `  z ) ) )  <  r
) )
5453ralimdv 2963 . . 3  |-  ( ph  ->  ( A. r  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( ( x  e.  Z  |->  A ) `  k
) `  z )  -  ( G `  z ) ) )  <  r  ->  A. r  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. z  e.  T  ( abs `  ( ( ( ( x  e.  Z  |->  ( A  |`  T ) ) `  k ) `  z
)  -  ( G `
 z ) ) )  <  r ) )
55 ulmf 24136 . . . . . 6  |-  ( ( x  e.  Z  |->  A ) ( ~~> u `  S ) G  ->  E. m  e.  ZZ  ( x  e.  Z  |->  A ) : (
ZZ>= `  m ) --> ( CC  ^m  S ) )
561, 55syl 17 . . . . 5  |-  ( ph  ->  E. m  e.  ZZ  ( x  e.  Z  |->  A ) : (
ZZ>= `  m ) --> ( CC  ^m  S ) )
57 fdm 6051 . . . . . . . 8  |-  ( ( x  e.  Z  |->  A ) : ( ZZ>= `  m ) --> ( CC 
^m  S )  ->  dom  ( x  e.  Z  |->  A )  =  (
ZZ>= `  m ) )
5819dmmptss 5631 . . . . . . . 8  |-  dom  (
x  e.  Z  |->  A )  C_  Z
5957, 58syl6eqssr 3656 . . . . . . 7  |-  ( ( x  e.  Z  |->  A ) : ( ZZ>= `  m ) --> ( CC 
^m  S )  -> 
( ZZ>= `  m )  C_  Z )
60 uzid 11702 . . . . . . . . 9  |-  ( m  e.  ZZ  ->  m  e.  ( ZZ>= `  m )
)
6160adantl 482 . . . . . . . 8  |-  ( (
ph  /\  m  e.  ZZ )  ->  m  e.  ( ZZ>= `  m )
)
62 ssel 3597 . . . . . . . . 9  |-  ( (
ZZ>= `  m )  C_  Z  ->  ( m  e.  ( ZZ>= `  m )  ->  m  e.  Z ) )
63 eluzel2 11692 . . . . . . . . . 10  |-  ( m  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
6463, 2eleq2s 2719 . . . . . . . . 9  |-  ( m  e.  Z  ->  M  e.  ZZ )
6562, 64syl6 35 . . . . . . . 8  |-  ( (
ZZ>= `  m )  C_  Z  ->  ( m  e.  ( ZZ>= `  m )  ->  M  e.  ZZ ) )
6661, 65syl5com 31 . . . . . . 7  |-  ( (
ph  /\  m  e.  ZZ )  ->  ( (
ZZ>= `  m )  C_  Z  ->  M  e.  ZZ ) )
6759, 66syl5 34 . . . . . 6  |-  ( (
ph  /\  m  e.  ZZ )  ->  ( ( x  e.  Z  |->  A ) : ( ZZ>= `  m ) --> ( CC 
^m  S )  ->  M  e.  ZZ )
)
6867rexlimdva 3031 . . . . 5  |-  ( ph  ->  ( E. m  e.  ZZ  ( x  e.  Z  |->  A ) : ( ZZ>= `  m ) --> ( CC  ^m  S )  ->  M  e.  ZZ ) )
6956, 68mpd 15 . . . 4  |-  ( ph  ->  M  e.  ZZ )
7011ralrimiva 2966 . . . . . 6  |-  ( ph  ->  A. x  e.  Z  A  e.  W )
7119fnmpt 6020 . . . . . 6  |-  ( A. x  e.  Z  A  e.  W  ->  ( x  e.  Z  |->  A )  Fn  Z )
7270, 71syl 17 . . . . 5  |-  ( ph  ->  ( x  e.  Z  |->  A )  Fn  Z
)
73 frn 6053 . . . . . . 7  |-  ( ( x  e.  Z  |->  A ) : ( ZZ>= `  m ) --> ( CC 
^m  S )  ->  ran  ( x  e.  Z  |->  A )  C_  ( CC  ^m  S ) )
7473rexlimivw 3029 . . . . . 6  |-  ( E. m  e.  ZZ  (
x  e.  Z  |->  A ) : ( ZZ>= `  m ) --> ( CC 
^m  S )  ->  ran  ( x  e.  Z  |->  A )  C_  ( CC  ^m  S ) )
7556, 74syl 17 . . . . 5  |-  ( ph  ->  ran  ( x  e.  Z  |->  A )  C_  ( CC  ^m  S ) )
76 df-f 5892 . . . . 5  |-  ( ( x  e.  Z  |->  A ) : Z --> ( CC 
^m  S )  <->  ( (
x  e.  Z  |->  A )  Fn  Z  /\  ran  ( x  e.  Z  |->  A )  C_  ( CC  ^m  S ) ) )
7772, 75, 76sylanbrc 698 . . . 4  |-  ( ph  ->  ( x  e.  Z  |->  A ) : Z --> ( CC  ^m  S ) )
78 eqidd 2623 . . . 4  |-  ( (
ph  /\  ( k  e.  Z  /\  z  e.  S ) )  -> 
( ( ( x  e.  Z  |->  A ) `
 k ) `  z )  =  ( ( ( x  e.  Z  |->  A ) `  k ) `  z
) )
79 eqidd 2623 . . . 4  |-  ( (
ph  /\  z  e.  S )  ->  ( G `  z )  =  ( G `  z ) )
80 ulmcl 24135 . . . . 5  |-  ( ( x  e.  Z  |->  A ) ( ~~> u `  S ) G  ->  G : S --> CC )
811, 80syl 17 . . . 4  |-  ( ph  ->  G : S --> CC )
82 ulmscl 24133 . . . . 5  |-  ( ( x  e.  Z  |->  A ) ( ~~> u `  S ) G  ->  S  e.  _V )
831, 82syl 17 . . . 4  |-  ( ph  ->  S  e.  _V )
842, 69, 77, 78, 79, 81, 83ulm2 24139 . . 3  |-  ( ph  ->  ( ( x  e.  Z  |->  A ) ( ~~> u `  S ) G  <->  A. r  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( ( x  e.  Z  |->  A ) `  k ) `
 z )  -  ( G `  z ) ) )  <  r
) )
8519fmpt 6381 . . . . . . . . . 10  |-  ( A. x  e.  Z  A  e.  ( CC  ^m  S
)  <->  ( x  e.  Z  |->  A ) : Z --> ( CC  ^m  S ) )
8677, 85sylibr 224 . . . . . . . . 9  |-  ( ph  ->  A. x  e.  Z  A  e.  ( CC  ^m  S ) )
8786r19.21bi 2932 . . . . . . . 8  |-  ( (
ph  /\  x  e.  Z )  ->  A  e.  ( CC  ^m  S
) )
88 elmapi 7879 . . . . . . . 8  |-  ( A  e.  ( CC  ^m  S )  ->  A : S --> CC )
8987, 88syl 17 . . . . . . 7  |-  ( (
ph  /\  x  e.  Z )  ->  A : S --> CC )
904adantr 481 . . . . . . 7  |-  ( (
ph  /\  x  e.  Z )  ->  T  C_  S )
9189, 90fssresd 6071 . . . . . 6  |-  ( (
ph  /\  x  e.  Z )  ->  ( A  |`  T ) : T --> CC )
92 cnex 10017 . . . . . . 7  |-  CC  e.  _V
9383, 4ssexd 4805 . . . . . . . 8  |-  ( ph  ->  T  e.  _V )
9493adantr 481 . . . . . . 7  |-  ( (
ph  /\  x  e.  Z )  ->  T  e.  _V )
95 elmapg 7870 . . . . . . 7  |-  ( ( CC  e.  _V  /\  T  e.  _V )  ->  ( ( A  |`  T )  e.  ( CC  ^m  T )  <-> 
( A  |`  T ) : T --> CC ) )
9692, 94, 95sylancr 695 . . . . . 6  |-  ( (
ph  /\  x  e.  Z )  ->  (
( A  |`  T )  e.  ( CC  ^m  T )  <->  ( A  |`  T ) : T --> CC ) )
9791, 96mpbird 247 . . . . 5  |-  ( (
ph  /\  x  e.  Z )  ->  ( A  |`  T )  e.  ( CC  ^m  T
) )
9897, 15fmptd 6385 . . . 4  |-  ( ph  ->  ( x  e.  Z  |->  ( A  |`  T ) ) : Z --> ( CC 
^m  T ) )
99 eqidd 2623 . . . 4  |-  ( (
ph  /\  ( k  e.  Z  /\  z  e.  T ) )  -> 
( ( ( x  e.  Z  |->  ( A  |`  T ) ) `  k ) `  z
)  =  ( ( ( x  e.  Z  |->  ( A  |`  T ) ) `  k ) `
 z ) )
100 fvres 6207 . . . . 5  |-  ( z  e.  T  ->  (
( G  |`  T ) `
 z )  =  ( G `  z
) )
101100adantl 482 . . . 4  |-  ( (
ph  /\  z  e.  T )  ->  (
( G  |`  T ) `
 z )  =  ( G `  z
) )
10281, 4fssresd 6071 . . . 4  |-  ( ph  ->  ( G  |`  T ) : T --> CC )
1032, 69, 98, 99, 101, 102, 93ulm2 24139 . . 3  |-  ( ph  ->  ( ( x  e.  Z  |->  ( A  |`  T ) ) ( ~~> u `  T ) ( G  |`  T )  <->  A. r  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. z  e.  T  ( abs `  ( ( ( ( x  e.  Z  |->  ( A  |`  T ) ) `  k ) `  z
)  -  ( G `
 z ) ) )  <  r ) )
10454, 84, 1033imtr4d 283 . 2  |-  ( ph  ->  ( ( x  e.  Z  |->  A ) ( ~~> u `  S ) G  ->  ( x  e.  Z  |->  ( A  |`  T ) ) ( ~~> u `  T ) ( G  |`  T ) ) )
1051, 104mpd 15 1  |-  ( ph  ->  ( x  e.  Z  |->  ( A  |`  T ) ) ( ~~> u `  T ) ( G  |`  T ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    C_ wss 3574   class class class wbr 4653    |-> cmpt 4729   dom cdm 5114   ran crn 5115    |` cres 5116    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   CCcc 9934    < clt 10074    - cmin 10266   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832   abscabs 13974   ~~> uculm 24130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-neg 10269  df-z 11378  df-uz 11688  df-ulm 24131
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator