MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ulmbdd Structured version   Visualization version   Unicode version

Theorem ulmbdd 24152
Description: A uniform limit of bounded functions is bounded. (Contributed by Mario Carneiro, 27-Feb-2015.)
Hypotheses
Ref Expression
ulmbdd.z  |-  Z  =  ( ZZ>= `  M )
ulmbdd.m  |-  ( ph  ->  M  e.  ZZ )
ulmbdd.f  |-  ( ph  ->  F : Z --> ( CC 
^m  S ) )
ulmbdd.b  |-  ( (
ph  /\  k  e.  Z )  ->  E. x  e.  RR  A. z  e.  S  ( abs `  (
( F `  k
) `  z )
)  <_  x )
ulmbdd.u  |-  ( ph  ->  F ( ~~> u `  S ) G )
Assertion
Ref Expression
ulmbdd  |-  ( ph  ->  E. x  e.  RR  A. z  e.  S  ( abs `  ( G `
 z ) )  <_  x )
Distinct variable groups:    x, k,
z, F    k, G, x, z    ph, k, x, z    S, k, x, z   
k, M, z    k, Z, x, z
Allowed substitution hint:    M( x)

Proof of Theorem ulmbdd
Dummy variables  j 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ulmbdd.z . . 3  |-  Z  =  ( ZZ>= `  M )
2 ulmbdd.m . . 3  |-  ( ph  ->  M  e.  ZZ )
3 ulmbdd.f . . 3  |-  ( ph  ->  F : Z --> ( CC 
^m  S ) )
4 eqidd 2623 . . 3  |-  ( (
ph  /\  ( k  e.  Z  /\  z  e.  S ) )  -> 
( ( F `  k ) `  z
)  =  ( ( F `  k ) `
 z ) )
5 eqidd 2623 . . 3  |-  ( (
ph  /\  z  e.  S )  ->  ( G `  z )  =  ( G `  z ) )
6 ulmbdd.u . . 3  |-  ( ph  ->  F ( ~~> u `  S ) G )
7 1rp 11836 . . . 4  |-  1  e.  RR+
87a1i 11 . . 3  |-  ( ph  ->  1  e.  RR+ )
91, 2, 3, 4, 5, 6, 8ulmi 24140 . 2  |-  ( ph  ->  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) A. z  e.  S  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  1
)
101r19.2uz 14091 . . 3  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) )  <  1  ->  E. k  e.  Z  A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) )  <  1 )
11 ulmbdd.b . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  E. x  e.  RR  A. z  e.  S  ( abs `  (
( F `  k
) `  z )
)  <_  x )
12 r19.26 3064 . . . . . . . . 9  |-  ( A. z  e.  S  (
( abs `  (
( F `  k
) `  z )
)  <_  x  /\  ( abs `  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) )  <  1 )  <->  ( A. z  e.  S  ( abs `  ( ( F `
 k ) `  z ) )  <_  x  /\  A. z  e.  S  ( abs `  (
( ( F `  k ) `  z
)  -  ( G `
 z ) ) )  <  1 ) )
13 peano2re 10209 . . . . . . . . . . 11  |-  ( x  e.  RR  ->  (
x  +  1 )  e.  RR )
1413adantl 482 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  ->  (
x  +  1 )  e.  RR )
15 ulmcl 24135 . . . . . . . . . . . . . . . . 17  |-  ( F ( ~~> u `  S
) G  ->  G : S --> CC )
166, 15syl 17 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  G : S --> CC )
1716ad3antrrr 766 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  /\  ( z  e.  S  /\  ( ( abs `  ( ( F `  k ) `
 z ) )  <_  x  /\  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  1
) ) )  ->  G : S --> CC )
18 simprl 794 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  /\  ( z  e.  S  /\  ( ( abs `  ( ( F `  k ) `
 z ) )  <_  x  /\  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  1
) ) )  -> 
z  e.  S )
1917, 18ffvelrnd 6360 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  /\  ( z  e.  S  /\  ( ( abs `  ( ( F `  k ) `
 z ) )  <_  x  /\  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  1
) ) )  -> 
( G `  z
)  e.  CC )
2019abscld 14175 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  /\  ( z  e.  S  /\  ( ( abs `  ( ( F `  k ) `
 z ) )  <_  x  /\  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  1
) ) )  -> 
( abs `  ( G `  z )
)  e.  RR )
213ad3antrrr 766 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  /\  ( z  e.  S  /\  ( ( abs `  ( ( F `  k ) `
 z ) )  <_  x  /\  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  1
) ) )  ->  F : Z --> ( CC 
^m  S ) )
22 simpllr 799 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  /\  ( z  e.  S  /\  ( ( abs `  ( ( F `  k ) `
 z ) )  <_  x  /\  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  1
) ) )  -> 
k  e.  Z )
2321, 22ffvelrnd 6360 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  /\  ( z  e.  S  /\  ( ( abs `  ( ( F `  k ) `
 z ) )  <_  x  /\  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  1
) ) )  -> 
( F `  k
)  e.  ( CC 
^m  S ) )
24 elmapi 7879 . . . . . . . . . . . . . . . . 17  |-  ( ( F `  k )  e.  ( CC  ^m  S )  ->  ( F `  k ) : S --> CC )
2523, 24syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  /\  ( z  e.  S  /\  ( ( abs `  ( ( F `  k ) `
 z ) )  <_  x  /\  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  1
) ) )  -> 
( F `  k
) : S --> CC )
2625, 18ffvelrnd 6360 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  /\  ( z  e.  S  /\  ( ( abs `  ( ( F `  k ) `
 z ) )  <_  x  /\  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  1
) ) )  -> 
( ( F `  k ) `  z
)  e.  CC )
2726abscld 14175 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  /\  ( z  e.  S  /\  ( ( abs `  ( ( F `  k ) `
 z ) )  <_  x  /\  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  1
) ) )  -> 
( abs `  (
( F `  k
) `  z )
)  e.  RR )
2819, 26subcld 10392 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  /\  ( z  e.  S  /\  ( ( abs `  ( ( F `  k ) `
 z ) )  <_  x  /\  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  1
) ) )  -> 
( ( G `  z )  -  (
( F `  k
) `  z )
)  e.  CC )
2928abscld 14175 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  /\  ( z  e.  S  /\  ( ( abs `  ( ( F `  k ) `
 z ) )  <_  x  /\  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  1
) ) )  -> 
( abs `  (
( G `  z
)  -  ( ( F `  k ) `
 z ) ) )  e.  RR )
3027, 29readdcld 10069 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  /\  ( z  e.  S  /\  ( ( abs `  ( ( F `  k ) `
 z ) )  <_  x  /\  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  1
) ) )  -> 
( ( abs `  (
( F `  k
) `  z )
)  +  ( abs `  ( ( G `  z )  -  (
( F `  k
) `  z )
) ) )  e.  RR )
3114adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  /\  ( z  e.  S  /\  ( ( abs `  ( ( F `  k ) `
 z ) )  <_  x  /\  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  1
) ) )  -> 
( x  +  1 )  e.  RR )
3226, 19pncan3d 10395 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  /\  ( z  e.  S  /\  ( ( abs `  ( ( F `  k ) `
 z ) )  <_  x  /\  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  1
) ) )  -> 
( ( ( F `
 k ) `  z )  +  ( ( G `  z
)  -  ( ( F `  k ) `
 z ) ) )  =  ( G `
 z ) )
3332fveq2d 6195 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  /\  ( z  e.  S  /\  ( ( abs `  ( ( F `  k ) `
 z ) )  <_  x  /\  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  1
) ) )  -> 
( abs `  (
( ( F `  k ) `  z
)  +  ( ( G `  z )  -  ( ( F `
 k ) `  z ) ) ) )  =  ( abs `  ( G `  z
) ) )
3426, 28abstrid 14195 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  /\  ( z  e.  S  /\  ( ( abs `  ( ( F `  k ) `
 z ) )  <_  x  /\  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  1
) ) )  -> 
( abs `  (
( ( F `  k ) `  z
)  +  ( ( G `  z )  -  ( ( F `
 k ) `  z ) ) ) )  <_  ( ( abs `  ( ( F `
 k ) `  z ) )  +  ( abs `  (
( G `  z
)  -  ( ( F `  k ) `
 z ) ) ) ) )
3533, 34eqbrtrrd 4677 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  /\  ( z  e.  S  /\  ( ( abs `  ( ( F `  k ) `
 z ) )  <_  x  /\  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  1
) ) )  -> 
( abs `  ( G `  z )
)  <_  ( ( abs `  ( ( F `
 k ) `  z ) )  +  ( abs `  (
( G `  z
)  -  ( ( F `  k ) `
 z ) ) ) ) )
36 simplr 792 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  /\  ( z  e.  S  /\  ( ( abs `  ( ( F `  k ) `
 z ) )  <_  x  /\  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  1
) ) )  ->  x  e.  RR )
37 1re 10039 . . . . . . . . . . . . . . 15  |-  1  e.  RR
3837a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  /\  ( z  e.  S  /\  ( ( abs `  ( ( F `  k ) `
 z ) )  <_  x  /\  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  1
) ) )  -> 
1  e.  RR )
39 simprrl 804 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  /\  ( z  e.  S  /\  ( ( abs `  ( ( F `  k ) `
 z ) )  <_  x  /\  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  1
) ) )  -> 
( abs `  (
( F `  k
) `  z )
)  <_  x )
4019, 26abssubd 14192 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  /\  ( z  e.  S  /\  ( ( abs `  ( ( F `  k ) `
 z ) )  <_  x  /\  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  1
) ) )  -> 
( abs `  (
( G `  z
)  -  ( ( F `  k ) `
 z ) ) )  =  ( abs `  ( ( ( F `
 k ) `  z )  -  ( G `  z )
) ) )
41 simprrr 805 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  /\  ( z  e.  S  /\  ( ( abs `  ( ( F `  k ) `
 z ) )  <_  x  /\  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  1
) ) )  -> 
( abs `  (
( ( F `  k ) `  z
)  -  ( G `
 z ) ) )  <  1 )
4240, 41eqbrtrd 4675 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  /\  ( z  e.  S  /\  ( ( abs `  ( ( F `  k ) `
 z ) )  <_  x  /\  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  1
) ) )  -> 
( abs `  (
( G `  z
)  -  ( ( F `  k ) `
 z ) ) )  <  1 )
43 ltle 10126 . . . . . . . . . . . . . . . 16  |-  ( ( ( abs `  (
( G `  z
)  -  ( ( F `  k ) `
 z ) ) )  e.  RR  /\  1  e.  RR )  ->  ( ( abs `  (
( G `  z
)  -  ( ( F `  k ) `
 z ) ) )  <  1  -> 
( abs `  (
( G `  z
)  -  ( ( F `  k ) `
 z ) ) )  <_  1 ) )
4429, 37, 43sylancl 694 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  /\  ( z  e.  S  /\  ( ( abs `  ( ( F `  k ) `
 z ) )  <_  x  /\  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  1
) ) )  -> 
( ( abs `  (
( G `  z
)  -  ( ( F `  k ) `
 z ) ) )  <  1  -> 
( abs `  (
( G `  z
)  -  ( ( F `  k ) `
 z ) ) )  <_  1 ) )
4542, 44mpd 15 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  /\  ( z  e.  S  /\  ( ( abs `  ( ( F `  k ) `
 z ) )  <_  x  /\  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  1
) ) )  -> 
( abs `  (
( G `  z
)  -  ( ( F `  k ) `
 z ) ) )  <_  1 )
4627, 29, 36, 38, 39, 45le2addd 10646 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  /\  ( z  e.  S  /\  ( ( abs `  ( ( F `  k ) `
 z ) )  <_  x  /\  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  1
) ) )  -> 
( ( abs `  (
( F `  k
) `  z )
)  +  ( abs `  ( ( G `  z )  -  (
( F `  k
) `  z )
) ) )  <_ 
( x  +  1 ) )
4720, 30, 31, 35, 46letrd 10194 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  /\  ( z  e.  S  /\  ( ( abs `  ( ( F `  k ) `
 z ) )  <_  x  /\  ( abs `  ( ( ( F `  k ) `
 z )  -  ( G `  z ) ) )  <  1
) ) )  -> 
( abs `  ( G `  z )
)  <_  ( x  +  1 ) )
4847expr 643 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  /\  z  e.  S
)  ->  ( (
( abs `  (
( F `  k
) `  z )
)  <_  x  /\  ( abs `  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) )  <  1 )  -> 
( abs `  ( G `  z )
)  <_  ( x  +  1 ) ) )
4948ralimdva 2962 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  ->  ( A. z  e.  S  ( ( abs `  (
( F `  k
) `  z )
)  <_  x  /\  ( abs `  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) )  <  1 )  ->  A. z  e.  S  ( abs `  ( G `
 z ) )  <_  ( x  + 
1 ) ) )
50 breq2 4657 . . . . . . . . . . . 12  |-  ( y  =  ( x  + 
1 )  ->  (
( abs `  ( G `  z )
)  <_  y  <->  ( abs `  ( G `  z
) )  <_  (
x  +  1 ) ) )
5150ralbidv 2986 . . . . . . . . . . 11  |-  ( y  =  ( x  + 
1 )  ->  ( A. z  e.  S  ( abs `  ( G `
 z ) )  <_  y  <->  A. z  e.  S  ( abs `  ( G `  z
) )  <_  (
x  +  1 ) ) )
5251rspcev 3309 . . . . . . . . . 10  |-  ( ( ( x  +  1 )  e.  RR  /\  A. z  e.  S  ( abs `  ( G `
 z ) )  <_  ( x  + 
1 ) )  ->  E. y  e.  RR  A. z  e.  S  ( abs `  ( G `
 z ) )  <_  y )
5314, 49, 52syl6an 568 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  ->  ( A. z  e.  S  ( ( abs `  (
( F `  k
) `  z )
)  <_  x  /\  ( abs `  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) )  <  1 )  ->  E. y  e.  RR  A. z  e.  S  ( abs `  ( G `
 z ) )  <_  y ) )
5412, 53syl5bir 233 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  ->  (
( A. z  e.  S  ( abs `  (
( F `  k
) `  z )
)  <_  x  /\  A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) )  <  1 )  ->  E. y  e.  RR  A. z  e.  S  ( abs `  ( G `
 z ) )  <_  y ) )
5554expd 452 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  Z )  /\  x  e.  RR )  ->  ( A. z  e.  S  ( abs `  ( ( F `  k ) `
 z ) )  <_  x  ->  ( A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) )  <  1  ->  E. y  e.  RR  A. z  e.  S  ( abs `  ( G `  z )
)  <_  y )
) )
5655rexlimdva 3031 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  ( E. x  e.  RR  A. z  e.  S  ( abs `  ( ( F `  k ) `
 z ) )  <_  x  ->  ( A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) )  <  1  ->  E. y  e.  RR  A. z  e.  S  ( abs `  ( G `  z )
)  <_  y )
) )
5711, 56mpd 15 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  ( A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) )  <  1  ->  E. y  e.  RR  A. z  e.  S  ( abs `  ( G `  z )
)  <_  y )
)
58 breq2 4657 . . . . . . 7  |-  ( y  =  x  ->  (
( abs `  ( G `  z )
)  <_  y  <->  ( abs `  ( G `  z
) )  <_  x
) )
5958ralbidv 2986 . . . . . 6  |-  ( y  =  x  ->  ( A. z  e.  S  ( abs `  ( G `
 z ) )  <_  y  <->  A. z  e.  S  ( abs `  ( G `  z
) )  <_  x
) )
6059cbvrexv 3172 . . . . 5  |-  ( E. y  e.  RR  A. z  e.  S  ( abs `  ( G `  z ) )  <_ 
y  <->  E. x  e.  RR  A. z  e.  S  ( abs `  ( G `
 z ) )  <_  x )
6157, 60syl6ib 241 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) )  <  1  ->  E. x  e.  RR  A. z  e.  S  ( abs `  ( G `  z )
)  <_  x )
)
6261rexlimdva 3031 . . 3  |-  ( ph  ->  ( E. k  e.  Z  A. z  e.  S  ( abs `  (
( ( F `  k ) `  z
)  -  ( G `
 z ) ) )  <  1  ->  E. x  e.  RR  A. z  e.  S  ( abs `  ( G `
 z ) )  <_  x ) )
6310, 62syl5 34 . 2  |-  ( ph  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) A. z  e.  S  ( abs `  ( ( ( F `  k
) `  z )  -  ( G `  z ) ) )  <  1  ->  E. x  e.  RR  A. z  e.  S  ( abs `  ( G `  z )
)  <_  x )
)
649, 63mpd 15 1  |-  ( ph  ->  E. x  e.  RR  A. z  e.  S  ( abs `  ( G `
 z ) )  <_  x )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   class class class wbr 4653   -->wf 5884   ` cfv 5888  (class class class)co 6650    ^m cmap 7857   CCcc 9934   RRcr 9935   1c1 9937    + caddc 9939    < clt 10074    <_ cle 10075    - cmin 10266   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832   abscabs 13974   ~~> uculm 24130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-sup 8348  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-ulm 24131
This theorem is referenced by:  mtestbdd  24159
  Copyright terms: Public domain W3C validator