MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgrupgr Structured version   Visualization version   Unicode version

Theorem umgrupgr 25998
Description: An undirected multigraph is an undirected pseudograph. (Contributed by AV, 25-Nov-2020.)
Assertion
Ref Expression
umgrupgr  |-  ( G  e. UMGraph  ->  G  e. UPGraph  )

Proof of Theorem umgrupgr
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . . . 5  |-  (Vtx `  G )  =  (Vtx
`  G )
2 eqid 2622 . . . . 5  |-  (iEdg `  G )  =  (iEdg `  G )
31, 2isumgr 25990 . . . 4  |-  ( G  e. UMGraph  ->  ( G  e. UMGraph  <->  (iEdg `  G ) : dom  (iEdg `  G ) --> { x  e.  ( ~P (Vtx `  G )  \  { (/) } )  |  ( # `  x
)  =  2 } ) )
4 id 22 . . . . 5  |-  ( (iEdg `  G ) : dom  (iEdg `  G ) --> { x  e.  ( ~P (Vtx `  G )  \  { (/) } )  |  ( # `  x
)  =  2 }  ->  (iEdg `  G
) : dom  (iEdg `  G ) --> { x  e.  ( ~P (Vtx `  G )  \  { (/)
} )  |  (
# `  x )  =  2 } )
5 2re 11090 . . . . . . . . . . 11  |-  2  e.  RR
65leidi 10562 . . . . . . . . . 10  |-  2  <_  2
76a1i 11 . . . . . . . . 9  |-  ( (
# `  x )  =  2  ->  2  <_  2 )
8 breq1 4656 . . . . . . . . 9  |-  ( (
# `  x )  =  2  ->  (
( # `  x )  <_  2  <->  2  <_  2 ) )
97, 8mpbird 247 . . . . . . . 8  |-  ( (
# `  x )  =  2  ->  ( # `
 x )  <_ 
2 )
109a1i 11 . . . . . . 7  |-  ( x  e.  ( ~P (Vtx `  G )  \  { (/)
} )  ->  (
( # `  x )  =  2  ->  ( # `
 x )  <_ 
2 ) )
1110ss2rabi 3684 . . . . . 6  |-  { x  e.  ( ~P (Vtx `  G )  \  { (/)
} )  |  (
# `  x )  =  2 }  C_  { x  e.  ( ~P (Vtx `  G )  \  { (/) } )  |  ( # `  x
)  <_  2 }
1211a1i 11 . . . . 5  |-  ( (iEdg `  G ) : dom  (iEdg `  G ) --> { x  e.  ( ~P (Vtx `  G )  \  { (/) } )  |  ( # `  x
)  =  2 }  ->  { x  e.  ( ~P (Vtx `  G )  \  { (/)
} )  |  (
# `  x )  =  2 }  C_  { x  e.  ( ~P (Vtx `  G )  \  { (/) } )  |  ( # `  x
)  <_  2 }
)
134, 12fssd 6057 . . . 4  |-  ( (iEdg `  G ) : dom  (iEdg `  G ) --> { x  e.  ( ~P (Vtx `  G )  \  { (/) } )  |  ( # `  x
)  =  2 }  ->  (iEdg `  G
) : dom  (iEdg `  G ) --> { x  e.  ( ~P (Vtx `  G )  \  { (/)
} )  |  (
# `  x )  <_  2 } )
143, 13syl6bi 243 . . 3  |-  ( G  e. UMGraph  ->  ( G  e. UMGraph  ->  (iEdg `  G ) : dom  (iEdg `  G
) --> { x  e.  ( ~P (Vtx `  G )  \  { (/)
} )  |  (
# `  x )  <_  2 } ) )
1514pm2.43i 52 . 2  |-  ( G  e. UMGraph  ->  (iEdg `  G
) : dom  (iEdg `  G ) --> { x  e.  ( ~P (Vtx `  G )  \  { (/)
} )  |  (
# `  x )  <_  2 } )
161, 2isupgr 25979 . 2  |-  ( G  e. UMGraph  ->  ( G  e. UPGraph  <->  (iEdg `  G ) : dom  (iEdg `  G ) --> { x  e.  ( ~P (Vtx `  G )  \  { (/) } )  |  ( # `  x
)  <_  2 }
) )
1715, 16mpbird 247 1  |-  ( G  e. UMGraph  ->  G  e. UPGraph  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   {crab 2916    \ cdif 3571    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   class class class wbr 4653   dom cdm 5114   -->wf 5884   ` cfv 5888    <_ cle 10075   2c2 11070   #chash 13117  Vtxcvtx 25874  iEdgciedg 25875   UPGraph cupgr 25975   UMGraph cumgr 25976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-i2m1 10004  ax-1ne0 10005  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-2 11079  df-upgr 25977  df-umgr 25978
This theorem is referenced by:  umgruhgr  25999  upgr0e  26006  umgrislfupgr  26018  nbumgrvtx  26242  umgrwlknloop  26545  umgrwwlks2on  26850  umgr3v3e3cycl  27044  konigsberg  27119
  Copyright terms: Public domain W3C validator