MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  umgrwwlks2on Structured version   Visualization version   Unicode version

Theorem umgrwwlks2on 26850
Description: A walk of length 2 between two vertices as word in a multigraph. This theorem would also hold for pseudographs, but to prove this the cases  A  =  B and/or  B  =  C must be considered separately. (Contributed by Alexander van der Vekens, 18-Feb-2018.) (Revised by AV, 12-May-2021.)
Hypotheses
Ref Expression
s3wwlks2on.v  |-  V  =  (Vtx `  G )
usgrwwlks2on.e  |-  E  =  (Edg `  G )
Assertion
Ref Expression
umgrwwlks2on  |-  ( ( G  e. UMGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( <" A B C ">  e.  ( A ( 2 WWalksNOn  G ) C )  <-> 
( { A ,  B }  e.  E  /\  { B ,  C }  e.  E )
) )

Proof of Theorem umgrwwlks2on
Dummy variables  f  p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 umgrupgr 25998 . . . 4  |-  ( G  e. UMGraph  ->  G  e. UPGraph  )
21adantr 481 . . 3  |-  ( ( G  e. UMGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  G  e. UPGraph  )
3 simp1 1061 . . . 4  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  A  e.  V )
43adantl 482 . . 3  |-  ( ( G  e. UMGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  A  e.  V )
5 simpr3 1069 . . 3  |-  ( ( G  e. UMGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  C  e.  V )
6 s3wwlks2on.v . . . 4  |-  V  =  (Vtx `  G )
76s3wwlks2on 26849 . . 3  |-  ( ( G  e. UPGraph  /\  A  e.  V  /\  C  e.  V )  ->  ( <" A B C ">  e.  ( A ( 2 WWalksNOn  G
) C )  <->  E. f
( f (Walks `  G ) <" A B C ">  /\  ( # `
 f )  =  2 ) ) )
82, 4, 5, 7syl3anc 1326 . 2  |-  ( ( G  e. UMGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( <" A B C ">  e.  ( A ( 2 WWalksNOn  G ) C )  <->  E. f ( f (Walks `  G ) <" A B C ">  /\  ( # `
 f )  =  2 ) ) )
9 eqid 2622 . . . . . . . 8  |-  (iEdg `  G )  =  (iEdg `  G )
106, 9upgr2wlk 26564 . . . . . . 7  |-  ( G  e. UPGraph  ->  ( ( f (Walks `  G ) <" A B C ">  /\  ( # `
 f )  =  2 )  <->  ( f : ( 0..^ 2 ) --> dom  (iEdg `  G
)  /\  <" A B C "> :
( 0 ... 2
) --> V  /\  (
( (iEdg `  G
) `  ( f `  0 ) )  =  { ( <" A B C "> `  0
) ,  ( <" A B C "> `  1
) }  /\  (
(iEdg `  G ) `  ( f `  1
) )  =  {
( <" A B C "> `  1
) ,  ( <" A B C "> `  2
) } ) ) ) )
111, 10syl 17 . . . . . 6  |-  ( G  e. UMGraph  ->  ( ( f (Walks `  G ) <" A B C ">  /\  ( # `
 f )  =  2 )  <->  ( f : ( 0..^ 2 ) --> dom  (iEdg `  G
)  /\  <" A B C "> :
( 0 ... 2
) --> V  /\  (
( (iEdg `  G
) `  ( f `  0 ) )  =  { ( <" A B C "> `  0
) ,  ( <" A B C "> `  1
) }  /\  (
(iEdg `  G ) `  ( f `  1
) )  =  {
( <" A B C "> `  1
) ,  ( <" A B C "> `  2
) } ) ) ) )
1211adantr 481 . . . . 5  |-  ( ( G  e. UMGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( (
f (Walks `  G
) <" A B C ">  /\  ( # `
 f )  =  2 )  <->  ( f : ( 0..^ 2 ) --> dom  (iEdg `  G
)  /\  <" A B C "> :
( 0 ... 2
) --> V  /\  (
( (iEdg `  G
) `  ( f `  0 ) )  =  { ( <" A B C "> `  0
) ,  ( <" A B C "> `  1
) }  /\  (
(iEdg `  G ) `  ( f `  1
) )  =  {
( <" A B C "> `  1
) ,  ( <" A B C "> `  2
) } ) ) ) )
13 s3fv0 13636 . . . . . . . . . . . 12  |-  ( A  e.  V  ->  ( <" A B C "> `  0
)  =  A )
14133ad2ant1 1082 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  ( <" A B C "> `  0
)  =  A )
15 s3fv1 13637 . . . . . . . . . . . 12  |-  ( B  e.  V  ->  ( <" A B C "> `  1
)  =  B )
16153ad2ant2 1083 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  ( <" A B C "> `  1
)  =  B )
1714, 16preq12d 4276 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  { ( <" A B C "> `  0
) ,  ( <" A B C "> `  1
) }  =  { A ,  B }
)
1817eqeq2d 2632 . . . . . . . . 9  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  ( ( (iEdg `  G ) `  (
f `  0 )
)  =  { (
<" A B C "> `  0
) ,  ( <" A B C "> `  1
) }  <->  ( (iEdg `  G ) `  (
f `  0 )
)  =  { A ,  B } ) )
19 s3fv2 13638 . . . . . . . . . . . 12  |-  ( C  e.  V  ->  ( <" A B C "> `  2
)  =  C )
20193ad2ant3 1084 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  ( <" A B C "> `  2
)  =  C )
2116, 20preq12d 4276 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  { ( <" A B C "> `  1
) ,  ( <" A B C "> `  2
) }  =  { B ,  C }
)
2221eqeq2d 2632 . . . . . . . . 9  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  ( ( (iEdg `  G ) `  (
f `  1 )
)  =  { (
<" A B C "> `  1
) ,  ( <" A B C "> `  2
) }  <->  ( (iEdg `  G ) `  (
f `  1 )
)  =  { B ,  C } ) )
2318, 22anbi12d 747 . . . . . . . 8  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  ( ( ( (iEdg `  G ) `  (
f `  0 )
)  =  { (
<" A B C "> `  0
) ,  ( <" A B C "> `  1
) }  /\  (
(iEdg `  G ) `  ( f `  1
) )  =  {
( <" A B C "> `  1
) ,  ( <" A B C "> `  2
) } )  <->  ( (
(iEdg `  G ) `  ( f `  0
) )  =  { A ,  B }  /\  ( (iEdg `  G
) `  ( f `  1 ) )  =  { B ,  C } ) ) )
2423adantl 482 . . . . . . 7  |-  ( ( G  e. UMGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( (
( (iEdg `  G
) `  ( f `  0 ) )  =  { ( <" A B C "> `  0
) ,  ( <" A B C "> `  1
) }  /\  (
(iEdg `  G ) `  ( f `  1
) )  =  {
( <" A B C "> `  1
) ,  ( <" A B C "> `  2
) } )  <->  ( (
(iEdg `  G ) `  ( f `  0
) )  =  { A ,  B }  /\  ( (iEdg `  G
) `  ( f `  1 ) )  =  { B ,  C } ) ) )
25243anbi3d 1405 . . . . . 6  |-  ( ( G  e. UMGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( (
f : ( 0..^ 2 ) --> dom  (iEdg `  G )  /\  <" A B C "> : ( 0 ... 2 ) --> V  /\  ( ( (iEdg `  G ) `  (
f `  0 )
)  =  { (
<" A B C "> `  0
) ,  ( <" A B C "> `  1
) }  /\  (
(iEdg `  G ) `  ( f `  1
) )  =  {
( <" A B C "> `  1
) ,  ( <" A B C "> `  2
) } ) )  <-> 
( f : ( 0..^ 2 ) --> dom  (iEdg `  G )  /\  <" A B C "> :
( 0 ... 2
) --> V  /\  (
( (iEdg `  G
) `  ( f `  0 ) )  =  { A ,  B }  /\  (
(iEdg `  G ) `  ( f `  1
) )  =  { B ,  C }
) ) ) )
26 umgruhgr 25999 . . . . . . . . . . 11  |-  ( G  e. UMGraph  ->  G  e. UHGraph  )
279uhgrfun 25961 . . . . . . . . . . 11  |-  ( G  e. UHGraph  ->  Fun  (iEdg `  G
) )
28 fdmrn 6064 . . . . . . . . . . . 12  |-  ( Fun  (iEdg `  G )  <->  (iEdg `  G ) : dom  (iEdg `  G ) --> ran  (iEdg `  G )
)
29 simpr 477 . . . . . . . . . . . . . . . . 17  |-  ( ( f : ( 0..^ 2 ) --> dom  (iEdg `  G )  /\  (iEdg `  G ) : dom  (iEdg `  G ) --> ran  (iEdg `  G )
)  ->  (iEdg `  G
) : dom  (iEdg `  G ) --> ran  (iEdg `  G ) )
30 id 22 . . . . . . . . . . . . . . . . . . 19  |-  ( f : ( 0..^ 2 ) --> dom  (iEdg `  G
)  ->  f :
( 0..^ 2 ) --> dom  (iEdg `  G
) )
31 c0ex 10034 . . . . . . . . . . . . . . . . . . . . . 22  |-  0  e.  _V
3231prid1 4297 . . . . . . . . . . . . . . . . . . . . 21  |-  0  e.  { 0 ,  1 }
33 fzo0to2pr 12553 . . . . . . . . . . . . . . . . . . . . 21  |-  ( 0..^ 2 )  =  {
0 ,  1 }
3432, 33eleqtrri 2700 . . . . . . . . . . . . . . . . . . . 20  |-  0  e.  ( 0..^ 2 )
3534a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( f : ( 0..^ 2 ) --> dom  (iEdg `  G
)  ->  0  e.  ( 0..^ 2 ) )
3630, 35ffvelrnd 6360 . . . . . . . . . . . . . . . . . 18  |-  ( f : ( 0..^ 2 ) --> dom  (iEdg `  G
)  ->  ( f `  0 )  e. 
dom  (iEdg `  G )
)
3736adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( ( f : ( 0..^ 2 ) --> dom  (iEdg `  G )  /\  (iEdg `  G ) : dom  (iEdg `  G ) --> ran  (iEdg `  G )
)  ->  ( f `  0 )  e. 
dom  (iEdg `  G )
)
3829, 37ffvelrnd 6360 . . . . . . . . . . . . . . . 16  |-  ( ( f : ( 0..^ 2 ) --> dom  (iEdg `  G )  /\  (iEdg `  G ) : dom  (iEdg `  G ) --> ran  (iEdg `  G )
)  ->  ( (iEdg `  G ) `  (
f `  0 )
)  e.  ran  (iEdg `  G ) )
39 1ex 10035 . . . . . . . . . . . . . . . . . . . . . 22  |-  1  e.  _V
4039prid2 4298 . . . . . . . . . . . . . . . . . . . . 21  |-  1  e.  { 0 ,  1 }
4140, 33eleqtrri 2700 . . . . . . . . . . . . . . . . . . . 20  |-  1  e.  ( 0..^ 2 )
4241a1i 11 . . . . . . . . . . . . . . . . . . 19  |-  ( f : ( 0..^ 2 ) --> dom  (iEdg `  G
)  ->  1  e.  ( 0..^ 2 ) )
4330, 42ffvelrnd 6360 . . . . . . . . . . . . . . . . . 18  |-  ( f : ( 0..^ 2 ) --> dom  (iEdg `  G
)  ->  ( f `  1 )  e. 
dom  (iEdg `  G )
)
4443adantr 481 . . . . . . . . . . . . . . . . 17  |-  ( ( f : ( 0..^ 2 ) --> dom  (iEdg `  G )  /\  (iEdg `  G ) : dom  (iEdg `  G ) --> ran  (iEdg `  G )
)  ->  ( f `  1 )  e. 
dom  (iEdg `  G )
)
4529, 44ffvelrnd 6360 . . . . . . . . . . . . . . . 16  |-  ( ( f : ( 0..^ 2 ) --> dom  (iEdg `  G )  /\  (iEdg `  G ) : dom  (iEdg `  G ) --> ran  (iEdg `  G )
)  ->  ( (iEdg `  G ) `  (
f `  1 )
)  e.  ran  (iEdg `  G ) )
4638, 45jca 554 . . . . . . . . . . . . . . 15  |-  ( ( f : ( 0..^ 2 ) --> dom  (iEdg `  G )  /\  (iEdg `  G ) : dom  (iEdg `  G ) --> ran  (iEdg `  G )
)  ->  ( (
(iEdg `  G ) `  ( f `  0
) )  e.  ran  (iEdg `  G )  /\  ( (iEdg `  G ) `  ( f `  1
) )  e.  ran  (iEdg `  G ) ) )
4746ex 450 . . . . . . . . . . . . . 14  |-  ( f : ( 0..^ 2 ) --> dom  (iEdg `  G
)  ->  ( (iEdg `  G ) : dom  (iEdg `  G ) --> ran  (iEdg `  G )  ->  ( ( (iEdg `  G ) `  (
f `  0 )
)  e.  ran  (iEdg `  G )  /\  (
(iEdg `  G ) `  ( f `  1
) )  e.  ran  (iEdg `  G ) ) ) )
48473ad2ant1 1082 . . . . . . . . . . . . 13  |-  ( ( f : ( 0..^ 2 ) --> dom  (iEdg `  G )  /\  <" A B C "> : ( 0 ... 2 ) --> V  /\  ( ( (iEdg `  G ) `  (
f `  0 )
)  =  { A ,  B }  /\  (
(iEdg `  G ) `  ( f `  1
) )  =  { B ,  C }
) )  ->  (
(iEdg `  G ) : dom  (iEdg `  G
) --> ran  (iEdg `  G
)  ->  ( (
(iEdg `  G ) `  ( f `  0
) )  e.  ran  (iEdg `  G )  /\  ( (iEdg `  G ) `  ( f `  1
) )  e.  ran  (iEdg `  G ) ) ) )
4948com12 32 . . . . . . . . . . . 12  |-  ( (iEdg `  G ) : dom  (iEdg `  G ) --> ran  (iEdg `  G )  ->  ( ( f : ( 0..^ 2 ) --> dom  (iEdg `  G
)  /\  <" A B C "> :
( 0 ... 2
) --> V  /\  (
( (iEdg `  G
) `  ( f `  0 ) )  =  { A ,  B }  /\  (
(iEdg `  G ) `  ( f `  1
) )  =  { B ,  C }
) )  ->  (
( (iEdg `  G
) `  ( f `  0 ) )  e.  ran  (iEdg `  G )  /\  (
(iEdg `  G ) `  ( f `  1
) )  e.  ran  (iEdg `  G ) ) ) )
5028, 49sylbi 207 . . . . . . . . . . 11  |-  ( Fun  (iEdg `  G )  ->  ( ( f : ( 0..^ 2 ) --> dom  (iEdg `  G
)  /\  <" A B C "> :
( 0 ... 2
) --> V  /\  (
( (iEdg `  G
) `  ( f `  0 ) )  =  { A ,  B }  /\  (
(iEdg `  G ) `  ( f `  1
) )  =  { B ,  C }
) )  ->  (
( (iEdg `  G
) `  ( f `  0 ) )  e.  ran  (iEdg `  G )  /\  (
(iEdg `  G ) `  ( f `  1
) )  e.  ran  (iEdg `  G ) ) ) )
5126, 27, 503syl 18 . . . . . . . . . 10  |-  ( G  e. UMGraph  ->  ( ( f : ( 0..^ 2 ) --> dom  (iEdg `  G
)  /\  <" A B C "> :
( 0 ... 2
) --> V  /\  (
( (iEdg `  G
) `  ( f `  0 ) )  =  { A ,  B }  /\  (
(iEdg `  G ) `  ( f `  1
) )  =  { B ,  C }
) )  ->  (
( (iEdg `  G
) `  ( f `  0 ) )  e.  ran  (iEdg `  G )  /\  (
(iEdg `  G ) `  ( f `  1
) )  e.  ran  (iEdg `  G ) ) ) )
5251imp 445 . . . . . . . . 9  |-  ( ( G  e. UMGraph  /\  (
f : ( 0..^ 2 ) --> dom  (iEdg `  G )  /\  <" A B C "> : ( 0 ... 2 ) --> V  /\  ( ( (iEdg `  G ) `  (
f `  0 )
)  =  { A ,  B }  /\  (
(iEdg `  G ) `  ( f `  1
) )  =  { B ,  C }
) ) )  -> 
( ( (iEdg `  G ) `  (
f `  0 )
)  e.  ran  (iEdg `  G )  /\  (
(iEdg `  G ) `  ( f `  1
) )  e.  ran  (iEdg `  G ) ) )
53 eqcom 2629 . . . . . . . . . . . . . . 15  |-  ( ( (iEdg `  G ) `  ( f `  0
) )  =  { A ,  B }  <->  { A ,  B }  =  ( (iEdg `  G ) `  (
f `  0 )
) )
5453biimpi 206 . . . . . . . . . . . . . 14  |-  ( ( (iEdg `  G ) `  ( f `  0
) )  =  { A ,  B }  ->  { A ,  B }  =  ( (iEdg `  G ) `  (
f `  0 )
) )
5554adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( (iEdg `  G
) `  ( f `  0 ) )  =  { A ,  B }  /\  (
(iEdg `  G ) `  ( f `  1
) )  =  { B ,  C }
)  ->  { A ,  B }  =  ( (iEdg `  G ) `  ( f `  0
) ) )
56553ad2ant3 1084 . . . . . . . . . . . 12  |-  ( ( f : ( 0..^ 2 ) --> dom  (iEdg `  G )  /\  <" A B C "> : ( 0 ... 2 ) --> V  /\  ( ( (iEdg `  G ) `  (
f `  0 )
)  =  { A ,  B }  /\  (
(iEdg `  G ) `  ( f `  1
) )  =  { B ,  C }
) )  ->  { A ,  B }  =  ( (iEdg `  G ) `  ( f `  0
) ) )
5756adantl 482 . . . . . . . . . . 11  |-  ( ( G  e. UMGraph  /\  (
f : ( 0..^ 2 ) --> dom  (iEdg `  G )  /\  <" A B C "> : ( 0 ... 2 ) --> V  /\  ( ( (iEdg `  G ) `  (
f `  0 )
)  =  { A ,  B }  /\  (
(iEdg `  G ) `  ( f `  1
) )  =  { B ,  C }
) ) )  ->  { A ,  B }  =  ( (iEdg `  G ) `  (
f `  0 )
) )
58 usgrwwlks2on.e . . . . . . . . . . . . 13  |-  E  =  (Edg `  G )
59 edgval 25941 . . . . . . . . . . . . 13  |-  (Edg `  G )  =  ran  (iEdg `  G )
6058, 59eqtri 2644 . . . . . . . . . . . 12  |-  E  =  ran  (iEdg `  G
)
6160a1i 11 . . . . . . . . . . 11  |-  ( ( G  e. UMGraph  /\  (
f : ( 0..^ 2 ) --> dom  (iEdg `  G )  /\  <" A B C "> : ( 0 ... 2 ) --> V  /\  ( ( (iEdg `  G ) `  (
f `  0 )
)  =  { A ,  B }  /\  (
(iEdg `  G ) `  ( f `  1
) )  =  { B ,  C }
) ) )  ->  E  =  ran  (iEdg `  G ) )
6257, 61eleq12d 2695 . . . . . . . . . 10  |-  ( ( G  e. UMGraph  /\  (
f : ( 0..^ 2 ) --> dom  (iEdg `  G )  /\  <" A B C "> : ( 0 ... 2 ) --> V  /\  ( ( (iEdg `  G ) `  (
f `  0 )
)  =  { A ,  B }  /\  (
(iEdg `  G ) `  ( f `  1
) )  =  { B ,  C }
) ) )  -> 
( { A ,  B }  e.  E  <->  ( (iEdg `  G ) `  ( f `  0
) )  e.  ran  (iEdg `  G ) ) )
63 eqcom 2629 . . . . . . . . . . . . . . 15  |-  ( ( (iEdg `  G ) `  ( f `  1
) )  =  { B ,  C }  <->  { B ,  C }  =  ( (iEdg `  G ) `  (
f `  1 )
) )
6463biimpi 206 . . . . . . . . . . . . . 14  |-  ( ( (iEdg `  G ) `  ( f `  1
) )  =  { B ,  C }  ->  { B ,  C }  =  ( (iEdg `  G ) `  (
f `  1 )
) )
6564adantl 482 . . . . . . . . . . . . 13  |-  ( ( ( (iEdg `  G
) `  ( f `  0 ) )  =  { A ,  B }  /\  (
(iEdg `  G ) `  ( f `  1
) )  =  { B ,  C }
)  ->  { B ,  C }  =  ( (iEdg `  G ) `  ( f `  1
) ) )
66653ad2ant3 1084 . . . . . . . . . . . 12  |-  ( ( f : ( 0..^ 2 ) --> dom  (iEdg `  G )  /\  <" A B C "> : ( 0 ... 2 ) --> V  /\  ( ( (iEdg `  G ) `  (
f `  0 )
)  =  { A ,  B }  /\  (
(iEdg `  G ) `  ( f `  1
) )  =  { B ,  C }
) )  ->  { B ,  C }  =  ( (iEdg `  G ) `  ( f `  1
) ) )
6766adantl 482 . . . . . . . . . . 11  |-  ( ( G  e. UMGraph  /\  (
f : ( 0..^ 2 ) --> dom  (iEdg `  G )  /\  <" A B C "> : ( 0 ... 2 ) --> V  /\  ( ( (iEdg `  G ) `  (
f `  0 )
)  =  { A ,  B }  /\  (
(iEdg `  G ) `  ( f `  1
) )  =  { B ,  C }
) ) )  ->  { B ,  C }  =  ( (iEdg `  G ) `  (
f `  1 )
) )
6867, 61eleq12d 2695 . . . . . . . . . 10  |-  ( ( G  e. UMGraph  /\  (
f : ( 0..^ 2 ) --> dom  (iEdg `  G )  /\  <" A B C "> : ( 0 ... 2 ) --> V  /\  ( ( (iEdg `  G ) `  (
f `  0 )
)  =  { A ,  B }  /\  (
(iEdg `  G ) `  ( f `  1
) )  =  { B ,  C }
) ) )  -> 
( { B ,  C }  e.  E  <->  ( (iEdg `  G ) `  ( f `  1
) )  e.  ran  (iEdg `  G ) ) )
6962, 68anbi12d 747 . . . . . . . . 9  |-  ( ( G  e. UMGraph  /\  (
f : ( 0..^ 2 ) --> dom  (iEdg `  G )  /\  <" A B C "> : ( 0 ... 2 ) --> V  /\  ( ( (iEdg `  G ) `  (
f `  0 )
)  =  { A ,  B }  /\  (
(iEdg `  G ) `  ( f `  1
) )  =  { B ,  C }
) ) )  -> 
( ( { A ,  B }  e.  E  /\  { B ,  C }  e.  E )  <->  ( ( (iEdg `  G
) `  ( f `  0 ) )  e.  ran  (iEdg `  G )  /\  (
(iEdg `  G ) `  ( f `  1
) )  e.  ran  (iEdg `  G ) ) ) )
7052, 69mpbird 247 . . . . . . . 8  |-  ( ( G  e. UMGraph  /\  (
f : ( 0..^ 2 ) --> dom  (iEdg `  G )  /\  <" A B C "> : ( 0 ... 2 ) --> V  /\  ( ( (iEdg `  G ) `  (
f `  0 )
)  =  { A ,  B }  /\  (
(iEdg `  G ) `  ( f `  1
) )  =  { B ,  C }
) ) )  -> 
( { A ,  B }  e.  E  /\  { B ,  C }  e.  E )
)
7170ex 450 . . . . . . 7  |-  ( G  e. UMGraph  ->  ( ( f : ( 0..^ 2 ) --> dom  (iEdg `  G
)  /\  <" A B C "> :
( 0 ... 2
) --> V  /\  (
( (iEdg `  G
) `  ( f `  0 ) )  =  { A ,  B }  /\  (
(iEdg `  G ) `  ( f `  1
) )  =  { B ,  C }
) )  ->  ( { A ,  B }  e.  E  /\  { B ,  C }  e.  E
) ) )
7271adantr 481 . . . . . 6  |-  ( ( G  e. UMGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( (
f : ( 0..^ 2 ) --> dom  (iEdg `  G )  /\  <" A B C "> : ( 0 ... 2 ) --> V  /\  ( ( (iEdg `  G ) `  (
f `  0 )
)  =  { A ,  B }  /\  (
(iEdg `  G ) `  ( f `  1
) )  =  { B ,  C }
) )  ->  ( { A ,  B }  e.  E  /\  { B ,  C }  e.  E
) ) )
7325, 72sylbid 230 . . . . 5  |-  ( ( G  e. UMGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( (
f : ( 0..^ 2 ) --> dom  (iEdg `  G )  /\  <" A B C "> : ( 0 ... 2 ) --> V  /\  ( ( (iEdg `  G ) `  (
f `  0 )
)  =  { (
<" A B C "> `  0
) ,  ( <" A B C "> `  1
) }  /\  (
(iEdg `  G ) `  ( f `  1
) )  =  {
( <" A B C "> `  1
) ,  ( <" A B C "> `  2
) } ) )  ->  ( { A ,  B }  e.  E  /\  { B ,  C }  e.  E )
) )
7412, 73sylbid 230 . . . 4  |-  ( ( G  e. UMGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( (
f (Walks `  G
) <" A B C ">  /\  ( # `
 f )  =  2 )  ->  ( { A ,  B }  e.  E  /\  { B ,  C }  e.  E
) ) )
7574exlimdv 1861 . . 3  |-  ( ( G  e. UMGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( E. f ( f (Walks `  G ) <" A B C ">  /\  ( # `
 f )  =  2 )  ->  ( { A ,  B }  e.  E  /\  { B ,  C }  e.  E
) ) )
7658umgr2wlk 26845 . . . . . . 7  |-  ( ( G  e. UMGraph  /\  { A ,  B }  e.  E  /\  { B ,  C }  e.  E )  ->  E. f E. p
( f (Walks `  G ) p  /\  ( # `  f )  =  2  /\  ( A  =  ( p `  0 )  /\  B  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) )
77 wlklenvp1 26514 . . . . . . . . . . . . . . . . . . . 20  |-  ( f (Walks `  G )
p  ->  ( # `  p
)  =  ( (
# `  f )  +  1 ) )
78 oveq1 6657 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
# `  f )  =  2  ->  (
( # `  f )  +  1 )  =  ( 2  +  1 ) )
79 2p1e3 11151 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( 2  +  1 )  =  3
8078, 79syl6eq 2672 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
# `  f )  =  2  ->  (
( # `  f )  +  1 )  =  3 )
8180adantr 481 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( # `  f
)  =  2  /\  ( A  =  ( p `  0 )  /\  B  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) )  ->  (
( # `  f )  +  1 )  =  3 )
8277, 81sylan9eq 2676 . . . . . . . . . . . . . . . . . . 19  |-  ( ( f (Walks `  G
) p  /\  (
( # `  f )  =  2  /\  ( A  =  ( p `  0 )  /\  B  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) )  ->  ( # `
 p )  =  3 )
83 eqcom 2629 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( A  =  ( p ` 
0 )  <->  ( p `  0 )  =  A )
84 eqcom 2629 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( B  =  ( p ` 
1 )  <->  ( p `  1 )  =  B )
85 eqcom 2629 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( C  =  ( p ` 
2 )  <->  ( p `  2 )  =  C )
8683, 84, 853anbi123i 1251 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  =  ( p `
 0 )  /\  B  =  ( p `  1 )  /\  C  =  ( p `  2 ) )  <-> 
( ( p ` 
0 )  =  A  /\  ( p ` 
1 )  =  B  /\  ( p ` 
2 )  =  C ) )
8786biimpi 206 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( A  =  ( p `
 0 )  /\  B  =  ( p `  1 )  /\  C  =  ( p `  2 ) )  ->  ( ( p `
 0 )  =  A  /\  ( p `
 1 )  =  B  /\  ( p `
 2 )  =  C ) )
8887adantl 482 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( # `  f
)  =  2  /\  ( A  =  ( p `  0 )  /\  B  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) )  ->  (
( p `  0
)  =  A  /\  ( p `  1
)  =  B  /\  ( p `  2
)  =  C ) )
8988adantl 482 . . . . . . . . . . . . . . . . . . 19  |-  ( ( f (Walks `  G
) p  /\  (
( # `  f )  =  2  /\  ( A  =  ( p `  0 )  /\  B  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) )  ->  (
( p `  0
)  =  A  /\  ( p `  1
)  =  B  /\  ( p `  2
)  =  C ) )
9082, 89jca 554 . . . . . . . . . . . . . . . . . 18  |-  ( ( f (Walks `  G
) p  /\  (
( # `  f )  =  2  /\  ( A  =  ( p `  0 )  /\  B  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) )  ->  (
( # `  p )  =  3  /\  (
( p `  0
)  =  A  /\  ( p `  1
)  =  B  /\  ( p `  2
)  =  C ) ) )
916wlkpwrd 26513 . . . . . . . . . . . . . . . . . . . . 21  |-  ( f (Walks `  G )
p  ->  p  e. Word  V )
9280eqeq2d 2632 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
# `  f )  =  2  ->  (
( # `  p )  =  ( ( # `  f )  +  1 )  <->  ( # `  p
)  =  3 ) )
9392adantl 482 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( p  e. Word  V  /\  ( # `  f )  =  2 )  -> 
( ( # `  p
)  =  ( (
# `  f )  +  1 )  <->  ( # `  p
)  =  3 ) )
94 simp1 1061 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( p  e. Word  V  /\  ( # `  p )  =  3  /\  ( A  =  ( p `  0 )  /\  B  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) )  ->  p  e. Word  V )
95 oveq2 6658 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( (
# `  p )  =  3  ->  (
0..^ ( # `  p
) )  =  ( 0..^ 3 ) )
96 fzo0to3tp 12554 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( 0..^ 3 )  =  {
0 ,  1 ,  2 }
9795, 96syl6eq 2672 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( (
# `  p )  =  3  ->  (
0..^ ( # `  p
) )  =  {
0 ,  1 ,  2 } )
9831tpid1 4303 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  0  e.  { 0 ,  1 ,  2 }
99 eleq2 2690 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( 0..^ ( # `  p
) )  =  {
0 ,  1 ,  2 }  ->  (
0  e.  ( 0..^ ( # `  p
) )  <->  0  e.  { 0 ,  1 ,  2 } ) )
10098, 99mpbiri 248 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( 0..^ ( # `  p
) )  =  {
0 ,  1 ,  2 }  ->  0  e.  ( 0..^ ( # `  p ) ) )
101 wrdsymbcl 13318 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( p  e. Word  V  /\  0  e.  ( 0..^ ( # `  p
) ) )  -> 
( p `  0
)  e.  V )
102100, 101sylan2 491 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( p  e. Word  V  /\  ( 0..^ ( # `  p
) )  =  {
0 ,  1 ,  2 } )  -> 
( p `  0
)  e.  V )
10339tpid2 4304 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  1  e.  { 0 ,  1 ,  2 }
104 eleq2 2690 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( 0..^ ( # `  p
) )  =  {
0 ,  1 ,  2 }  ->  (
1  e.  ( 0..^ ( # `  p
) )  <->  1  e.  { 0 ,  1 ,  2 } ) )
105103, 104mpbiri 248 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( 0..^ ( # `  p
) )  =  {
0 ,  1 ,  2 }  ->  1  e.  ( 0..^ ( # `  p ) ) )
106 wrdsymbcl 13318 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( p  e. Word  V  /\  1  e.  ( 0..^ ( # `  p
) ) )  -> 
( p `  1
)  e.  V )
107105, 106sylan2 491 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( p  e. Word  V  /\  ( 0..^ ( # `  p
) )  =  {
0 ,  1 ,  2 } )  -> 
( p `  1
)  e.  V )
108 2ex 11092 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  2  e.  _V
109108tpid3 4307 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  2  e.  { 0 ,  1 ,  2 }
110 eleq2 2690 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ( 0..^ ( # `  p
) )  =  {
0 ,  1 ,  2 }  ->  (
2  e.  ( 0..^ ( # `  p
) )  <->  2  e.  { 0 ,  1 ,  2 } ) )
111109, 110mpbiri 248 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( 0..^ ( # `  p
) )  =  {
0 ,  1 ,  2 }  ->  2  e.  ( 0..^ ( # `  p ) ) )
112 wrdsymbcl 13318 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( p  e. Word  V  /\  2  e.  ( 0..^ ( # `  p
) ) )  -> 
( p `  2
)  e.  V )
113111, 112sylan2 491 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( p  e. Word  V  /\  ( 0..^ ( # `  p
) )  =  {
0 ,  1 ,  2 } )  -> 
( p `  2
)  e.  V )
114102, 107, 1133jca 1242 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( p  e. Word  V  /\  ( 0..^ ( # `  p
) )  =  {
0 ,  1 ,  2 } )  -> 
( ( p ` 
0 )  e.  V  /\  ( p `  1
)  e.  V  /\  ( p `  2
)  e.  V ) )
11597, 114sylan2 491 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( p  e. Word  V  /\  ( # `  p )  =  3 )  -> 
( ( p ` 
0 )  e.  V  /\  ( p `  1
)  e.  V  /\  ( p `  2
)  e.  V ) )
1161153adant3 1081 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( p  e. Word  V  /\  ( # `  p )  =  3  /\  ( A  =  ( p `  0 )  /\  B  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) )  ->  ( (
p `  0 )  e.  V  /\  (
p `  1 )  e.  V  /\  (
p `  2 )  e.  V ) )
117 eleq1 2689 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( A  =  ( p ` 
0 )  ->  ( A  e.  V  <->  ( p `  0 )  e.  V ) )
1181173ad2ant1 1082 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( A  =  ( p `
 0 )  /\  B  =  ( p `  1 )  /\  C  =  ( p `  2 ) )  ->  ( A  e.  V  <->  ( p ` 
0 )  e.  V
) )
119 eleq1 2689 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( B  =  ( p ` 
1 )  ->  ( B  e.  V  <->  ( p `  1 )  e.  V ) )
1201193ad2ant2 1083 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( A  =  ( p `
 0 )  /\  B  =  ( p `  1 )  /\  C  =  ( p `  2 ) )  ->  ( B  e.  V  <->  ( p ` 
1 )  e.  V
) )
121 eleq1 2689 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( C  =  ( p ` 
2 )  ->  ( C  e.  V  <->  ( p `  2 )  e.  V ) )
1221213ad2ant3 1084 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( A  =  ( p `
 0 )  /\  B  =  ( p `  1 )  /\  C  =  ( p `  2 ) )  ->  ( C  e.  V  <->  ( p ` 
2 )  e.  V
) )
123118, 120, 1223anbi123d 1399 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ( A  =  ( p `
 0 )  /\  B  =  ( p `  1 )  /\  C  =  ( p `  2 ) )  ->  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  <->  ( (
p `  0 )  e.  V  /\  (
p `  1 )  e.  V  /\  (
p `  2 )  e.  V ) ) )
1241233ad2ant3 1084 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( p  e. Word  V  /\  ( # `  p )  =  3  /\  ( A  =  ( p `  0 )  /\  B  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) )  ->  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  <->  ( ( p `  0
)  e.  V  /\  ( p `  1
)  e.  V  /\  ( p `  2
)  e.  V ) ) )
125116, 124mpbird 247 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( p  e. Word  V  /\  ( # `  p )  =  3  /\  ( A  =  ( p `  0 )  /\  B  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) )  ->  ( A  e.  V  /\  B  e.  V  /\  C  e.  V ) )
12694, 125jca 554 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( p  e. Word  V  /\  ( # `  p )  =  3  /\  ( A  =  ( p `  0 )  /\  B  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) )  ->  ( p  e. Word  V  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V ) ) )
1271263exp 1264 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( p  e. Word  V  ->  (
( # `  p )  =  3  ->  (
( A  =  ( p `  0 )  /\  B  =  ( p `  1 )  /\  C  =  ( p `  2 ) )  ->  ( p  e. Word  V  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V ) ) ) ) )
128127adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( p  e. Word  V  /\  ( # `  f )  =  2 )  -> 
( ( # `  p
)  =  3  -> 
( ( A  =  ( p `  0
)  /\  B  =  ( p `  1
)  /\  C  =  ( p `  2
) )  ->  (
p  e. Word  V  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) ) ) ) )
12993, 128sylbid 230 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( p  e. Word  V  /\  ( # `  f )  =  2 )  -> 
( ( # `  p
)  =  ( (
# `  f )  +  1 )  -> 
( ( A  =  ( p `  0
)  /\  B  =  ( p `  1
)  /\  C  =  ( p `  2
) )  ->  (
p  e. Word  V  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) ) ) ) )
130129impancom 456 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( p  e. Word  V  /\  ( # `  p )  =  ( ( # `  f )  +  1 ) )  ->  (
( # `  f )  =  2  ->  (
( A  =  ( p `  0 )  /\  B  =  ( p `  1 )  /\  C  =  ( p `  2 ) )  ->  ( p  e. Word  V  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V ) ) ) ) )
131130impd 447 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( p  e. Word  V  /\  ( # `  p )  =  ( ( # `  f )  +  1 ) )  ->  (
( ( # `  f
)  =  2  /\  ( A  =  ( p `  0 )  /\  B  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) )  ->  (
p  e. Word  V  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) ) ) )
13291, 77, 131syl2anc 693 . . . . . . . . . . . . . . . . . . . 20  |-  ( f (Walks `  G )
p  ->  ( (
( # `  f )  =  2  /\  ( A  =  ( p `  0 )  /\  B  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) )  ->  ( p  e. Word  V  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V ) ) ) )
133132imp 445 . . . . . . . . . . . . . . . . . . 19  |-  ( ( f (Walks `  G
) p  /\  (
( # `  f )  =  2  /\  ( A  =  ( p `  0 )  /\  B  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) )  ->  (
p  e. Word  V  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) ) )
134 eqwrds3 13704 . . . . . . . . . . . . . . . . . . 19  |-  ( ( p  e. Word  V  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V
) )  ->  (
p  =  <" A B C ">  <->  ( ( # `
 p )  =  3  /\  ( ( p `  0 )  =  A  /\  (
p `  1 )  =  B  /\  (
p `  2 )  =  C ) ) ) )
135133, 134syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( f (Walks `  G
) p  /\  (
( # `  f )  =  2  /\  ( A  =  ( p `  0 )  /\  B  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) )  ->  (
p  =  <" A B C ">  <->  ( ( # `
 p )  =  3  /\  ( ( p `  0 )  =  A  /\  (
p `  1 )  =  B  /\  (
p `  2 )  =  C ) ) ) )
13690, 135mpbird 247 . . . . . . . . . . . . . . . . 17  |-  ( ( f (Walks `  G
) p  /\  (
( # `  f )  =  2  /\  ( A  =  ( p `  0 )  /\  B  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) )  ->  p  =  <" A B C "> )
137136breq2d 4665 . . . . . . . . . . . . . . . 16  |-  ( ( f (Walks `  G
) p  /\  (
( # `  f )  =  2  /\  ( A  =  ( p `  0 )  /\  B  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) )  ->  (
f (Walks `  G
) p  <->  f (Walks `  G ) <" A B C "> )
)
138137biimpd 219 . . . . . . . . . . . . . . 15  |-  ( ( f (Walks `  G
) p  /\  (
( # `  f )  =  2  /\  ( A  =  ( p `  0 )  /\  B  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) )  ->  (
f (Walks `  G
) p  ->  f
(Walks `  G ) <" A B C "> ) )
139138ex 450 . . . . . . . . . . . . . 14  |-  ( f (Walks `  G )
p  ->  ( (
( # `  f )  =  2  /\  ( A  =  ( p `  0 )  /\  B  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) )  ->  ( f
(Walks `  G )
p  ->  f (Walks `  G ) <" A B C "> )
) )
140139pm2.43a 54 . . . . . . . . . . . . 13  |-  ( f (Walks `  G )
p  ->  ( (
( # `  f )  =  2  /\  ( A  =  ( p `  0 )  /\  B  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) )  ->  f (Walks `  G ) <" A B C "> )
)
1411403impib 1262 . . . . . . . . . . . 12  |-  ( ( f (Walks `  G
) p  /\  ( # `
 f )  =  2  /\  ( A  =  ( p ` 
0 )  /\  B  =  ( p ` 
1 )  /\  C  =  ( p ` 
2 ) ) )  ->  f (Walks `  G ) <" A B C "> )
142141adantl 482 . . . . . . . . . . 11  |-  ( ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V
)  /\  ( f
(Walks `  G )
p  /\  ( # `  f
)  =  2  /\  ( A  =  ( p `  0 )  /\  B  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) )  -> 
f (Walks `  G
) <" A B C "> )
143 simpr2 1068 . . . . . . . . . . 11  |-  ( ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V
)  /\  ( f
(Walks `  G )
p  /\  ( # `  f
)  =  2  /\  ( A  =  ( p `  0 )  /\  B  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) )  -> 
( # `  f )  =  2 )
144142, 143jca 554 . . . . . . . . . 10  |-  ( ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V
)  /\  ( f
(Walks `  G )
p  /\  ( # `  f
)  =  2  /\  ( A  =  ( p `  0 )  /\  B  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) ) )  -> 
( f (Walks `  G ) <" A B C ">  /\  ( # `
 f )  =  2 ) )
145144ex 450 . . . . . . . . 9  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  ( ( f (Walks `  G ) p  /\  ( # `  f )  =  2  /\  ( A  =  ( p `  0 )  /\  B  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) )  ->  ( f
(Walks `  G ) <" A B C ">  /\  ( # `
 f )  =  2 ) ) )
146145exlimdv 1861 . . . . . . . 8  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  ( E. p ( f (Walks `  G
) p  /\  ( # `
 f )  =  2  /\  ( A  =  ( p ` 
0 )  /\  B  =  ( p ` 
1 )  /\  C  =  ( p ` 
2 ) ) )  ->  ( f (Walks `  G ) <" A B C ">  /\  ( # `
 f )  =  2 ) ) )
147146eximdv 1846 . . . . . . 7  |-  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  ( E. f E. p ( f (Walks `  G ) p  /\  ( # `  f )  =  2  /\  ( A  =  ( p `  0 )  /\  B  =  ( p `  1 )  /\  C  =  ( p `  2 ) ) )  ->  E. f
( f (Walks `  G ) <" A B C ">  /\  ( # `
 f )  =  2 ) ) )
14876, 147syl5com 31 . . . . . 6  |-  ( ( G  e. UMGraph  /\  { A ,  B }  e.  E  /\  { B ,  C }  e.  E )  ->  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  E. f
( f (Walks `  G ) <" A B C ">  /\  ( # `
 f )  =  2 ) ) )
1491483expib 1268 . . . . 5  |-  ( G  e. UMGraph  ->  ( ( { A ,  B }  e.  E  /\  { B ,  C }  e.  E
)  ->  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  E. f ( f (Walks `  G ) <" A B C ">  /\  ( # `
 f )  =  2 ) ) ) )
150149com23 86 . . . 4  |-  ( G  e. UMGraph  ->  ( ( A  e.  V  /\  B  e.  V  /\  C  e.  V )  ->  (
( { A ,  B }  e.  E  /\  { B ,  C }  e.  E )  ->  E. f ( f (Walks `  G ) <" A B C ">  /\  ( # `
 f )  =  2 ) ) ) )
151150imp 445 . . 3  |-  ( ( G  e. UMGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( ( { A ,  B }  e.  E  /\  { B ,  C }  e.  E
)  ->  E. f
( f (Walks `  G ) <" A B C ">  /\  ( # `
 f )  =  2 ) ) )
15275, 151impbid 202 . 2  |-  ( ( G  e. UMGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( E. f ( f (Walks `  G ) <" A B C ">  /\  ( # `
 f )  =  2 )  <->  ( { A ,  B }  e.  E  /\  { B ,  C }  e.  E
) ) )
1538, 152bitrd 268 1  |-  ( ( G  e. UMGraph  /\  ( A  e.  V  /\  B  e.  V  /\  C  e.  V )
)  ->  ( <" A B C ">  e.  ( A ( 2 WWalksNOn  G ) C )  <-> 
( { A ,  B }  e.  E  /\  { B ,  C }  e.  E )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   {cpr 4179   {ctp 4181   class class class wbr 4653   dom cdm 5114   ran crn 5115   Fun wfun 5882   -->wf 5884   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939   2c2 11070   3c3 11071   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291   <"cs3 13587  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939   UHGraph cuhgr 25951   UPGraph cupgr 25975   UMGraph cumgr 25976  Walkscwlks 26492   WWalksNOn cwwlksnon 26719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-ac2 9285  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-ac 8939  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-concat 13301  df-s1 13302  df-s2 13593  df-s3 13594  df-edg 25940  df-uhgr 25953  df-upgr 25977  df-umgr 25978  df-wlks 26495  df-wwlks 26722  df-wwlksn 26723  df-wwlksnon 26724
This theorem is referenced by:  wwlks2onsym  26851  usgr2wspthons3  26857  frgr2wwlkeu  27191
  Copyright terms: Public domain W3C validator