Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unidmex Structured version   Visualization version   Unicode version

Theorem unidmex 39217
Description: If  F is a set, then  U. dom  F is a set (common case). (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
unidmex.f  |-  ( ph  ->  F  e.  V )
unidmex.x  |-  X  = 
U. dom  F
Assertion
Ref Expression
unidmex  |-  ( ph  ->  X  e.  _V )

Proof of Theorem unidmex
StepHypRef Expression
1 unidmex.x . 2  |-  X  = 
U. dom  F
2 unidmex.f . . 3  |-  ( ph  ->  F  e.  V )
3 dmexg 7097 . . 3  |-  ( F  e.  V  ->  dom  F  e.  _V )
4 uniexg 6955 . . 3  |-  ( dom 
F  e.  _V  ->  U.
dom  F  e.  _V )
52, 3, 43syl 18 . 2  |-  ( ph  ->  U. dom  F  e. 
_V )
61, 5syl5eqel 2705 1  |-  ( ph  ->  X  e.  _V )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   _Vcvv 3200   U.cuni 4436   dom cdm 5114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-cnv 5122  df-dm 5124  df-rn 5125
This theorem is referenced by:  omessle  40712  caragensplit  40714  omeunile  40719  caragenuncl  40727  omeunle  40730  omeiunlempt  40734  carageniuncllem2  40736  caragencmpl  40749
  Copyright terms: Public domain W3C validator