| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > omessle | Structured version Visualization version Unicode version | ||
| Description: The outer measure of a set is larger or equal to the measure of a subset, Definition 113A (ii) of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| omessle.o |
|
| omessle.x |
|
| omessle.b |
|
| omessle.a |
|
| Ref | Expression |
|---|---|
| omessle |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omessle.a |
. . 3
| |
| 2 | omessle.o |
. . . . . . 7
| |
| 3 | omessle.x |
. . . . . . 7
| |
| 4 | 2, 3 | unidmex 39217 |
. . . . . 6
|
| 5 | omessle.b |
. . . . . 6
| |
| 6 | 4, 5 | ssexd 4805 |
. . . . 5
|
| 7 | 6, 1 | ssexd 4805 |
. . . 4
|
| 8 | elpwg 4166 |
. . . 4
| |
| 9 | 7, 8 | syl 17 |
. . 3
|
| 10 | 1, 9 | mpbird 247 |
. 2
|
| 11 | 5, 3 | syl6sseq 3651 |
. . . 4
|
| 12 | elpwg 4166 |
. . . . 5
| |
| 13 | 6, 12 | syl 17 |
. . . 4
|
| 14 | 11, 13 | mpbird 247 |
. . 3
|
| 15 | isome 40708 |
. . . . . 6
| |
| 16 | 2, 15 | syl 17 |
. . . . 5
|
| 17 | 2, 16 | mpbid 222 |
. . . 4
|
| 18 | 17 | simplrd 793 |
. . 3
|
| 19 | pweq 4161 |
. . . . . 6
| |
| 20 | 19 | raleqdv 3144 |
. . . . 5
|
| 21 | fveq2 6191 |
. . . . . . 7
| |
| 22 | 21 | breq2d 4665 |
. . . . . 6
|
| 23 | 22 | ralbidv 2986 |
. . . . 5
|
| 24 | 20, 23 | bitrd 268 |
. . . 4
|
| 25 | 24 | rspcva 3307 |
. . 3
|
| 26 | 14, 18, 25 | syl2anc 693 |
. 2
|
| 27 | fveq2 6191 |
. . . 4
| |
| 28 | 27 | breq1d 4663 |
. . 3
|
| 29 | 28 | rspcva 3307 |
. 2
|
| 30 | 10, 26, 29 | syl2anc 693 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-ome 40704 |
| This theorem is referenced by: omessre 40724 omeiunltfirp 40733 carageniuncllem2 40736 caratheodorylem2 40741 omess0 40748 caragencmpl 40749 |
| Copyright terms: Public domain | W3C validator |