MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  upgrres Structured version   Visualization version   Unicode version

Theorem upgrres 26198
Description: A subgraph obtained by removing one vertex and all edges incident with this vertex from a pseudograph (see uhgrspan1 26195) is a pseudograph. (Contributed by AV, 8-Nov-2020.) (Revised by AV, 19-Dec-2021.)
Hypotheses
Ref Expression
upgrres.v  |-  V  =  (Vtx `  G )
upgrres.e  |-  E  =  (iEdg `  G )
upgrres.f  |-  F  =  { i  e.  dom  E  |  N  e/  ( E `  i ) }
upgrres.s  |-  S  = 
<. ( V  \  { N } ) ,  ( E  |`  F ) >.
Assertion
Ref Expression
upgrres  |-  ( ( G  e. UPGraph  /\  N  e.  V )  ->  S  e. UPGraph  )
Distinct variable groups:    i, E    i, N
Allowed substitution hints:    S( i)    F( i)    G( i)    V( i)

Proof of Theorem upgrres
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 upgruhgr 25997 . . . . . 6  |-  ( G  e. UPGraph  ->  G  e. UHGraph  )
2 upgrres.e . . . . . . 7  |-  E  =  (iEdg `  G )
32uhgrfun 25961 . . . . . 6  |-  ( G  e. UHGraph  ->  Fun  E )
4 funres 5929 . . . . . 6  |-  ( Fun 
E  ->  Fun  ( E  |`  F ) )
51, 3, 43syl 18 . . . . 5  |-  ( G  e. UPGraph  ->  Fun  ( E  |`  F ) )
65funfnd 5919 . . . 4  |-  ( G  e. UPGraph  ->  ( E  |`  F )  Fn  dom  ( E  |`  F ) )
76adantr 481 . . 3  |-  ( ( G  e. UPGraph  /\  N  e.  V )  ->  ( E  |`  F )  Fn 
dom  ( E  |`  F ) )
8 upgrres.v . . . 4  |-  V  =  (Vtx `  G )
9 upgrres.f . . . 4  |-  F  =  { i  e.  dom  E  |  N  e/  ( E `  i ) }
108, 2, 9upgrreslem 26196 . . 3  |-  ( ( G  e. UPGraph  /\  N  e.  V )  ->  ran  ( E  |`  F ) 
C_  { p  e.  ( ~P ( V 
\  { N }
)  \  { (/) } )  |  ( # `  p
)  <_  2 }
)
11 df-f 5892 . . 3  |-  ( ( E  |`  F ) : dom  ( E  |`  F ) --> { p  e.  ( ~P ( V 
\  { N }
)  \  { (/) } )  |  ( # `  p
)  <_  2 }  <->  ( ( E  |`  F )  Fn  dom  ( E  |`  F )  /\  ran  ( E  |`  F ) 
C_  { p  e.  ( ~P ( V 
\  { N }
)  \  { (/) } )  |  ( # `  p
)  <_  2 }
) )
127, 10, 11sylanbrc 698 . 2  |-  ( ( G  e. UPGraph  /\  N  e.  V )  ->  ( E  |`  F ) : dom  ( E  |`  F ) --> { p  e.  ( ~P ( V 
\  { N }
)  \  { (/) } )  |  ( # `  p
)  <_  2 }
)
13 upgrres.s . . . 4  |-  S  = 
<. ( V  \  { N } ) ,  ( E  |`  F ) >.
14 opex 4932 . . . 4  |-  <. ( V  \  { N }
) ,  ( E  |`  F ) >.  e.  _V
1513, 14eqeltri 2697 . . 3  |-  S  e. 
_V
168, 2, 9, 13uhgrspan1lem2 26193 . . . . 5  |-  (Vtx `  S )  =  ( V  \  { N } )
1716eqcomi 2631 . . . 4  |-  ( V 
\  { N }
)  =  (Vtx `  S )
188, 2, 9, 13uhgrspan1lem3 26194 . . . . 5  |-  (iEdg `  S )  =  ( E  |`  F )
1918eqcomi 2631 . . . 4  |-  ( E  |`  F )  =  (iEdg `  S )
2017, 19isupgr 25979 . . 3  |-  ( S  e.  _V  ->  ( S  e. UPGraph  <->  ( E  |`  F ) : dom  ( E  |`  F ) --> { p  e.  ( ~P ( V  \  { N } )  \  { (/) } )  |  ( # `  p
)  <_  2 }
) )
2115, 20mp1i 13 . 2  |-  ( ( G  e. UPGraph  /\  N  e.  V )  ->  ( S  e. UPGraph  <->  ( E  |`  F ) : dom  ( E  |`  F ) --> { p  e.  ( ~P ( V  \  { N } )  \  { (/) } )  |  ( # `  p
)  <_  2 }
) )
2212, 21mpbird 247 1  |-  ( ( G  e. UPGraph  /\  N  e.  V )  ->  S  e. UPGraph  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    e/ wnel 2897   {crab 2916   _Vcvv 3200    \ cdif 3571    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   <.cop 4183   class class class wbr 4653   dom cdm 5114   ran crn 5115    |` cres 5116   Fun wfun 5882    Fn wfn 5883   -->wf 5884   ` cfv 5888    <_ cle 10075   2c2 11070   #chash 13117  Vtxcvtx 25874  iEdgciedg 25875   UHGraph cuhgr 25951   UPGraph cupgr 25975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-1st 7168  df-2nd 7169  df-vtx 25876  df-iedg 25877  df-uhgr 25953  df-upgr 25977
This theorem is referenced by:  finsumvtxdg2size  26446
  Copyright terms: Public domain W3C validator