MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfbas Structured version   Visualization version   Unicode version

Theorem isfbas 21633
Description: The predicate " F is a filter base." Note that some authors require filter bases to be closed under pairwise intersections, but that is not necessary under our definition. One advantage of this definition is that tails in a directed set form a filter base under our meaning. (Contributed by Jeff Hankins, 1-Sep-2009.) (Revised by Mario Carneiro, 28-Jul-2015.)
Assertion
Ref Expression
isfbas  |-  ( B  e.  A  ->  ( F  e.  ( fBas `  B )  <->  ( F  C_ 
~P B  /\  ( F  =/=  (/)  /\  (/)  e/  F  /\  A. x  e.  F  A. y  e.  F  ( F  i^i  ~P (
x  i^i  y )
)  =/=  (/) ) ) ) )
Distinct variable groups:    x, y, F    x, B, y
Allowed substitution hints:    A( x, y)

Proof of Theorem isfbas
Dummy variables  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwexg 4850 . . . . 5  |-  ( B  e.  A  ->  ~P B  e.  _V )
2 elpw2g 4827 . . . . 5  |-  ( ~P B  e.  _V  ->  ( F  e.  ~P ~P B 
<->  F  C_  ~P B
) )
31, 2syl 17 . . . 4  |-  ( B  e.  A  ->  ( F  e.  ~P ~P B 
<->  F  C_  ~P B
) )
43anbi1d 741 . . 3  |-  ( B  e.  A  ->  (
( F  e.  ~P ~P B  /\  ( F  =/=  (/)  /\  (/)  e/  F  /\  A. x  e.  F  A. y  e.  F  ( F  i^i  ~P (
x  i^i  y )
)  =/=  (/) ) )  <-> 
( F  C_  ~P B  /\  ( F  =/=  (/)  /\  (/)  e/  F  /\  A. x  e.  F  A. y  e.  F  ( F  i^i  ~P ( x  i^i  y ) )  =/=  (/) ) ) ) )
5 elex 3212 . . . 4  |-  ( B  e.  A  ->  B  e.  _V )
65biantrurd 529 . . 3  |-  ( B  e.  A  ->  (
( F  e.  ~P ~P B  /\  ( F  =/=  (/)  /\  (/)  e/  F  /\  A. x  e.  F  A. y  e.  F  ( F  i^i  ~P (
x  i^i  y )
)  =/=  (/) ) )  <-> 
( B  e.  _V  /\  ( F  e.  ~P ~P B  /\  ( F  =/=  (/)  /\  (/)  e/  F  /\  A. x  e.  F  A. y  e.  F  ( F  i^i  ~P (
x  i^i  y )
)  =/=  (/) ) ) ) ) )
74, 6bitr3d 270 . 2  |-  ( B  e.  A  ->  (
( F  C_  ~P B  /\  ( F  =/=  (/)  /\  (/)  e/  F  /\  A. x  e.  F  A. y  e.  F  ( F  i^i  ~P ( x  i^i  y ) )  =/=  (/) ) )  <->  ( B  e.  _V  /\  ( F  e.  ~P ~P B  /\  ( F  =/=  (/)  /\  (/)  e/  F  /\  A. x  e.  F  A. y  e.  F  ( F  i^i  ~P (
x  i^i  y )
)  =/=  (/) ) ) ) ) )
8 df-fbas 19743 . . . 4  |-  fBas  =  ( z  e.  _V  |->  { w  e.  ~P ~P z  |  (
w  =/=  (/)  /\  (/)  e/  w  /\  A. x  e.  w  A. y  e.  w  ( w  i^i  ~P (
x  i^i  y )
)  =/=  (/) ) } )
9 neeq1 2856 . . . . . 6  |-  ( w  =  F  ->  (
w  =/=  (/)  <->  F  =/=  (/) ) )
10 neleq2 2903 . . . . . 6  |-  ( w  =  F  ->  ( (/) 
e/  w  <->  (/)  e/  F
) )
11 ineq1 3807 . . . . . . . . 9  |-  ( w  =  F  ->  (
w  i^i  ~P (
x  i^i  y )
)  =  ( F  i^i  ~P ( x  i^i  y ) ) )
1211neeq1d 2853 . . . . . . . 8  |-  ( w  =  F  ->  (
( w  i^i  ~P ( x  i^i  y
) )  =/=  (/)  <->  ( F  i^i  ~P ( x  i^i  y ) )  =/=  (/) ) )
1312raleqbi1dv 3146 . . . . . . 7  |-  ( w  =  F  ->  ( A. y  e.  w  ( w  i^i  ~P (
x  i^i  y )
)  =/=  (/)  <->  A. y  e.  F  ( F  i^i  ~P ( x  i^i  y ) )  =/=  (/) ) )
1413raleqbi1dv 3146 . . . . . 6  |-  ( w  =  F  ->  ( A. x  e.  w  A. y  e.  w  ( w  i^i  ~P (
x  i^i  y )
)  =/=  (/)  <->  A. x  e.  F  A. y  e.  F  ( F  i^i  ~P ( x  i^i  y ) )  =/=  (/) ) )
159, 10, 143anbi123d 1399 . . . . 5  |-  ( w  =  F  ->  (
( w  =/=  (/)  /\  (/)  e/  w  /\  A. x  e.  w  A. y  e.  w  ( w  i^i  ~P (
x  i^i  y )
)  =/=  (/) )  <->  ( F  =/=  (/)  /\  (/)  e/  F  /\  A. x  e.  F  A. y  e.  F  ( F  i^i  ~P (
x  i^i  y )
)  =/=  (/) ) ) )
1615adantl 482 . . . 4  |-  ( ( z  =  B  /\  w  =  F )  ->  ( ( w  =/=  (/)  /\  (/)  e/  w  /\  A. x  e.  w  A. y  e.  w  (
w  i^i  ~P (
x  i^i  y )
)  =/=  (/) )  <->  ( F  =/=  (/)  /\  (/)  e/  F  /\  A. x  e.  F  A. y  e.  F  ( F  i^i  ~P (
x  i^i  y )
)  =/=  (/) ) ) )
17 pweq 4161 . . . . 5  |-  ( z  =  B  ->  ~P z  =  ~P B
)
1817pweqd 4163 . . . 4  |-  ( z  =  B  ->  ~P ~P z  =  ~P ~P B )
19 vpwex 4849 . . . . . 6  |-  ~P z  e.  _V
2019pwex 4848 . . . . 5  |-  ~P ~P z  e.  _V
2120a1i 11 . . . 4  |-  ( z  e.  _V  ->  ~P ~P z  e.  _V )
228, 16, 18, 21elmptrab 21630 . . 3  |-  ( F  e.  ( fBas `  B
)  <->  ( B  e. 
_V  /\  F  e.  ~P ~P B  /\  ( F  =/=  (/)  /\  (/)  e/  F  /\  A. x  e.  F  A. y  e.  F  ( F  i^i  ~P (
x  i^i  y )
)  =/=  (/) ) ) )
23 3anass 1042 . . 3  |-  ( ( B  e.  _V  /\  F  e.  ~P ~P B  /\  ( F  =/=  (/)  /\  (/)  e/  F  /\  A. x  e.  F  A. y  e.  F  ( F  i^i  ~P ( x  i^i  y ) )  =/=  (/) ) )  <->  ( B  e.  _V  /\  ( F  e.  ~P ~P B  /\  ( F  =/=  (/)  /\  (/)  e/  F  /\  A. x  e.  F  A. y  e.  F  ( F  i^i  ~P (
x  i^i  y )
)  =/=  (/) ) ) ) )
2422, 23bitri 264 . 2  |-  ( F  e.  ( fBas `  B
)  <->  ( B  e. 
_V  /\  ( F  e.  ~P ~P B  /\  ( F  =/=  (/)  /\  (/)  e/  F  /\  A. x  e.  F  A. y  e.  F  ( F  i^i  ~P (
x  i^i  y )
)  =/=  (/) ) ) ) )
257, 24syl6rbbr 279 1  |-  ( B  e.  A  ->  ( F  e.  ( fBas `  B )  <->  ( F  C_ 
~P B  /\  ( F  =/=  (/)  /\  (/)  e/  F  /\  A. x  e.  F  A. y  e.  F  ( F  i^i  ~P (
x  i^i  y )
)  =/=  (/) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794    e/ wnel 2897   A.wral 2912   _Vcvv 3200    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   ` cfv 5888   fBascfbas 19734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-fbas 19743
This theorem is referenced by:  fbasne0  21634  0nelfb  21635  fbsspw  21636  isfbas2  21639  trfbas2  21647  fbasweak  21669  zfbas  21700  tsmsfbas  21931  ustfilxp  22016  minveclem3b  23199
  Copyright terms: Public domain W3C validator