MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustuqtop Structured version   Visualization version   Unicode version

Theorem ustuqtop 22050
Description: For a given uniform structure  U on a set  X, there is a unique topology  j such that the set  ran  ( v  e.  U  |->  ( v
" { p }
) ) is the filter of the neighborhoods of  p for that topology. Proposition 1 of [BourbakiTop1] p. II.3. (Contributed by Thierry Arnoux, 11-Jan-2018.)
Hypothesis
Ref Expression
utopustuq.1  |-  N  =  ( p  e.  X  |->  ran  ( v  e.  U  |->  ( v " { p } ) ) )
Assertion
Ref Expression
ustuqtop  |-  ( U  e.  (UnifOn `  X
)  ->  E! j  e.  (TopOn `  X ) A. p  e.  X  ( N `  p )  =  ( ( nei `  j ) `  {
p } ) )
Distinct variable groups:    v, p, U    X, p, v, j   
j, N, p    v,
j, U    j, X
Allowed substitution hint:    N( v)

Proof of Theorem ustuqtop
Dummy variables  a 
b  c  r  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . . . . 7  |-  ( p  =  r  ->  ( N `  p )  =  ( N `  r ) )
21eleq2d 2687 . . . . . 6  |-  ( p  =  r  ->  (
c  e.  ( N `
 p )  <->  c  e.  ( N `  r ) ) )
32cbvralv 3171 . . . . 5  |-  ( A. p  e.  c  c  e.  ( N `  p
)  <->  A. r  e.  c  c  e.  ( N `
 r ) )
4 eleq1 2689 . . . . . 6  |-  ( c  =  a  ->  (
c  e.  ( N `
 p )  <->  a  e.  ( N `  p ) ) )
54raleqbi1dv 3146 . . . . 5  |-  ( c  =  a  ->  ( A. p  e.  c 
c  e.  ( N `
 p )  <->  A. p  e.  a  a  e.  ( N `  p ) ) )
63, 5syl5bbr 274 . . . 4  |-  ( c  =  a  ->  ( A. r  e.  c 
c  e.  ( N `
 r )  <->  A. p  e.  a  a  e.  ( N `  p ) ) )
76cbvrabv 3199 . . 3  |-  { c  e.  ~P X  |  A. r  e.  c 
c  e.  ( N `
 r ) }  =  { a  e. 
~P X  |  A. p  e.  a  a  e.  ( N `  p
) }
8 utopustuq.1 . . . 4  |-  N  =  ( p  e.  X  |->  ran  ( v  e.  U  |->  ( v " { p } ) ) )
98ustuqtop0 22044 . . 3  |-  ( U  e.  (UnifOn `  X
)  ->  N : X
--> ~P ~P X )
108ustuqtop1 22045 . . 3  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X
)  /\  a  C_  b  /\  b  C_  X
)  /\  a  e.  ( N `  p ) )  ->  b  e.  ( N `  p ) )
118ustuqtop2 22046 . . 3  |-  ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  ->  ( fi `  ( N `  p ) )  C_  ( N `  p ) )
128ustuqtop3 22047 . . 3  |-  ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  /\  a  e.  ( N `  p
) )  ->  p  e.  a )
138ustuqtop4 22048 . . 3  |-  ( ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  /\  a  e.  ( N `  p
) )  ->  E. b  e.  ( N `  p
) A. x  e.  b  a  e.  ( N `  x ) )
148ustuqtop5 22049 . . 3  |-  ( ( U  e.  (UnifOn `  X )  /\  p  e.  X )  ->  X  e.  ( N `  p
) )
157, 9, 10, 11, 12, 13, 14neiptopreu 20937 . 2  |-  ( U  e.  (UnifOn `  X
)  ->  E! j  e.  (TopOn `  X ) N  =  ( p  e.  X  |->  ( ( nei `  j ) `
 { p }
) ) )
169feqmptd 6249 . . . . 5  |-  ( U  e.  (UnifOn `  X
)  ->  N  =  ( p  e.  X  |->  ( N `  p
) ) )
1716eqeq1d 2624 . . . 4  |-  ( U  e.  (UnifOn `  X
)  ->  ( N  =  ( p  e.  X  |->  ( ( nei `  j ) `  {
p } ) )  <-> 
( p  e.  X  |->  ( N `  p
) )  =  ( p  e.  X  |->  ( ( nei `  j
) `  { p } ) ) ) )
18 fvex 6201 . . . . . 6  |-  ( N `
 p )  e. 
_V
1918rgenw 2924 . . . . 5  |-  A. p  e.  X  ( N `  p )  e.  _V
20 mpteqb 6299 . . . . 5  |-  ( A. p  e.  X  ( N `  p )  e.  _V  ->  ( (
p  e.  X  |->  ( N `  p ) )  =  ( p  e.  X  |->  ( ( nei `  j ) `
 { p }
) )  <->  A. p  e.  X  ( N `  p )  =  ( ( nei `  j
) `  { p } ) ) )
2119, 20ax-mp 5 . . . 4  |-  ( ( p  e.  X  |->  ( N `  p ) )  =  ( p  e.  X  |->  ( ( nei `  j ) `
 { p }
) )  <->  A. p  e.  X  ( N `  p )  =  ( ( nei `  j
) `  { p } ) )
2217, 21syl6bb 276 . . 3  |-  ( U  e.  (UnifOn `  X
)  ->  ( N  =  ( p  e.  X  |->  ( ( nei `  j ) `  {
p } ) )  <->  A. p  e.  X  ( N `  p )  =  ( ( nei `  j ) `  {
p } ) ) )
2322reubidv 3126 . 2  |-  ( U  e.  (UnifOn `  X
)  ->  ( E! j  e.  (TopOn `  X
) N  =  ( p  e.  X  |->  ( ( nei `  j
) `  { p } ) )  <->  E! j  e.  (TopOn `  X ) A. p  e.  X  ( N `  p )  =  ( ( nei `  j ) `  {
p } ) ) )
2415, 23mpbid 222 1  |-  ( U  e.  (UnifOn `  X
)  ->  E! j  e.  (TopOn `  X ) A. p  e.  X  ( N `  p )  =  ( ( nei `  j ) `  {
p } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990   A.wral 2912   E!wreu 2914   {crab 2916   _Vcvv 3200   ~Pcpw 4158   {csn 4177    |-> cmpt 4729   ran crn 5115   "cima 5117   ` cfv 5888  TopOnctopon 20715   neicnei 20901  UnifOncust 22003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-en 7956  df-fin 7959  df-fi 8317  df-top 20699  df-topon 20716  df-ntr 20824  df-nei 20902  df-ust 22004
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator