MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ustval Structured version   Visualization version   Unicode version

Theorem ustval 22006
Description: The class of all uniform structures for a base  X. (Contributed by Thierry Arnoux, 15-Nov-2017.) (Revised by AV, 17-Sep-2021.)
Assertion
Ref Expression
ustval  |-  ( X  e.  V  ->  (UnifOn `  X )  =  {
u  |  ( u 
C_  ~P ( X  X.  X )  /\  ( X  X.  X )  e.  u  /\  A. v  e.  u  ( A. w  e.  ~P  ( X  X.  X ) ( v  C_  w  ->  w  e.  u )  /\  A. w  e.  u  ( v  i^i  w )  e.  u  /\  (
(  _I  |`  X ) 
C_  v  /\  `' v  e.  u  /\  E. w  e.  u  ( w  o.  w ) 
C_  v ) ) ) } )
Distinct variable group:    v, u, w, X
Allowed substitution hints:    V( w, v, u)

Proof of Theorem ustval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 df-ust 22004 . . 3  |- UnifOn  =  ( x  e.  _V  |->  { u  |  ( u 
C_  ~P ( x  X.  x )  /\  (
x  X.  x )  e.  u  /\  A. v  e.  u  ( A. w  e.  ~P  ( x  X.  x
) ( v  C_  w  ->  w  e.  u
)  /\  A. w  e.  u  ( v  i^i  w )  e.  u  /\  ( (  _I  |`  x
)  C_  v  /\  `' v  e.  u  /\  E. w  e.  u  ( w  o.  w
)  C_  v )
) ) } )
21a1i 11 . 2  |-  ( X  e.  V  -> UnifOn  =  ( x  e.  _V  |->  { u  |  ( u 
C_  ~P ( x  X.  x )  /\  (
x  X.  x )  e.  u  /\  A. v  e.  u  ( A. w  e.  ~P  ( x  X.  x
) ( v  C_  w  ->  w  e.  u
)  /\  A. w  e.  u  ( v  i^i  w )  e.  u  /\  ( (  _I  |`  x
)  C_  v  /\  `' v  e.  u  /\  E. w  e.  u  ( w  o.  w
)  C_  v )
) ) } ) )
3 id 22 . . . . . . . 8  |-  ( x  =  X  ->  x  =  X )
43sqxpeqd 5141 . . . . . . 7  |-  ( x  =  X  ->  (
x  X.  x )  =  ( X  X.  X ) )
54pweqd 4163 . . . . . 6  |-  ( x  =  X  ->  ~P ( x  X.  x
)  =  ~P ( X  X.  X ) )
65sseq2d 3633 . . . . 5  |-  ( x  =  X  ->  (
u  C_  ~P (
x  X.  x )  <-> 
u  C_  ~P ( X  X.  X ) ) )
74eleq1d 2686 . . . . 5  |-  ( x  =  X  ->  (
( x  X.  x
)  e.  u  <->  ( X  X.  X )  e.  u
) )
85raleqdv 3144 . . . . . . 7  |-  ( x  =  X  ->  ( A. w  e.  ~P  ( x  X.  x
) ( v  C_  w  ->  w  e.  u
)  <->  A. w  e.  ~P  ( X  X.  X
) ( v  C_  w  ->  w  e.  u
) ) )
9 reseq2 5391 . . . . . . . . 9  |-  ( x  =  X  ->  (  _I  |`  x )  =  (  _I  |`  X ) )
109sseq1d 3632 . . . . . . . 8  |-  ( x  =  X  ->  (
(  _I  |`  x
)  C_  v  <->  (  _I  |`  X )  C_  v
) )
11103anbi1d 1403 . . . . . . 7  |-  ( x  =  X  ->  (
( (  _I  |`  x
)  C_  v  /\  `' v  e.  u  /\  E. w  e.  u  ( w  o.  w
)  C_  v )  <->  ( (  _I  |`  X ) 
C_  v  /\  `' v  e.  u  /\  E. w  e.  u  ( w  o.  w ) 
C_  v ) ) )
128, 113anbi13d 1401 . . . . . 6  |-  ( x  =  X  ->  (
( A. w  e. 
~P  ( x  X.  x ) ( v 
C_  w  ->  w  e.  u )  /\  A. w  e.  u  (
v  i^i  w )  e.  u  /\  (
(  _I  |`  x
)  C_  v  /\  `' v  e.  u  /\  E. w  e.  u  ( w  o.  w
)  C_  v )
)  <->  ( A. w  e.  ~P  ( X  X.  X ) ( v 
C_  w  ->  w  e.  u )  /\  A. w  e.  u  (
v  i^i  w )  e.  u  /\  (
(  _I  |`  X ) 
C_  v  /\  `' v  e.  u  /\  E. w  e.  u  ( w  o.  w ) 
C_  v ) ) ) )
1312ralbidv 2986 . . . . 5  |-  ( x  =  X  ->  ( A. v  e.  u  ( A. w  e.  ~P  ( x  X.  x
) ( v  C_  w  ->  w  e.  u
)  /\  A. w  e.  u  ( v  i^i  w )  e.  u  /\  ( (  _I  |`  x
)  C_  v  /\  `' v  e.  u  /\  E. w  e.  u  ( w  o.  w
)  C_  v )
)  <->  A. v  e.  u  ( A. w  e.  ~P  ( X  X.  X
) ( v  C_  w  ->  w  e.  u
)  /\  A. w  e.  u  ( v  i^i  w )  e.  u  /\  ( (  _I  |`  X ) 
C_  v  /\  `' v  e.  u  /\  E. w  e.  u  ( w  o.  w ) 
C_  v ) ) ) )
146, 7, 133anbi123d 1399 . . . 4  |-  ( x  =  X  ->  (
( u  C_  ~P ( x  X.  x
)  /\  ( x  X.  x )  e.  u  /\  A. v  e.  u  ( A. w  e.  ~P  ( x  X.  x
) ( v  C_  w  ->  w  e.  u
)  /\  A. w  e.  u  ( v  i^i  w )  e.  u  /\  ( (  _I  |`  x
)  C_  v  /\  `' v  e.  u  /\  E. w  e.  u  ( w  o.  w
)  C_  v )
) )  <->  ( u  C_ 
~P ( X  X.  X )  /\  ( X  X.  X )  e.  u  /\  A. v  e.  u  ( A. w  e.  ~P  ( X  X.  X ) ( v  C_  w  ->  w  e.  u )  /\  A. w  e.  u  ( v  i^i  w )  e.  u  /\  (
(  _I  |`  X ) 
C_  v  /\  `' v  e.  u  /\  E. w  e.  u  ( w  o.  w ) 
C_  v ) ) ) ) )
1514abbidv 2741 . . 3  |-  ( x  =  X  ->  { u  |  ( u  C_  ~P ( x  X.  x
)  /\  ( x  X.  x )  e.  u  /\  A. v  e.  u  ( A. w  e.  ~P  ( x  X.  x
) ( v  C_  w  ->  w  e.  u
)  /\  A. w  e.  u  ( v  i^i  w )  e.  u  /\  ( (  _I  |`  x
)  C_  v  /\  `' v  e.  u  /\  E. w  e.  u  ( w  o.  w
)  C_  v )
) ) }  =  { u  |  (
u  C_  ~P ( X  X.  X )  /\  ( X  X.  X
)  e.  u  /\  A. v  e.  u  ( A. w  e.  ~P  ( X  X.  X
) ( v  C_  w  ->  w  e.  u
)  /\  A. w  e.  u  ( v  i^i  w )  e.  u  /\  ( (  _I  |`  X ) 
C_  v  /\  `' v  e.  u  /\  E. w  e.  u  ( w  o.  w ) 
C_  v ) ) ) } )
1615adantl 482 . 2  |-  ( ( X  e.  V  /\  x  =  X )  ->  { u  |  ( u  C_  ~P (
x  X.  x )  /\  ( x  X.  x )  e.  u  /\  A. v  e.  u  ( A. w  e.  ~P  ( x  X.  x
) ( v  C_  w  ->  w  e.  u
)  /\  A. w  e.  u  ( v  i^i  w )  e.  u  /\  ( (  _I  |`  x
)  C_  v  /\  `' v  e.  u  /\  E. w  e.  u  ( w  o.  w
)  C_  v )
) ) }  =  { u  |  (
u  C_  ~P ( X  X.  X )  /\  ( X  X.  X
)  e.  u  /\  A. v  e.  u  ( A. w  e.  ~P  ( X  X.  X
) ( v  C_  w  ->  w  e.  u
)  /\  A. w  e.  u  ( v  i^i  w )  e.  u  /\  ( (  _I  |`  X ) 
C_  v  /\  `' v  e.  u  /\  E. w  e.  u  ( w  o.  w ) 
C_  v ) ) ) } )
17 elex 3212 . 2  |-  ( X  e.  V  ->  X  e.  _V )
18 simp1 1061 . . . . 5  |-  ( ( u  C_  ~P ( X  X.  X )  /\  ( X  X.  X
)  e.  u  /\  A. v  e.  u  ( A. w  e.  ~P  ( X  X.  X
) ( v  C_  w  ->  w  e.  u
)  /\  A. w  e.  u  ( v  i^i  w )  e.  u  /\  ( (  _I  |`  X ) 
C_  v  /\  `' v  e.  u  /\  E. w  e.  u  ( w  o.  w ) 
C_  v ) ) )  ->  u  C_  ~P ( X  X.  X
) )
1918ss2abi 3674 . . . 4  |-  { u  |  ( u  C_  ~P ( X  X.  X
)  /\  ( X  X.  X )  e.  u  /\  A. v  e.  u  ( A. w  e.  ~P  ( X  X.  X
) ( v  C_  w  ->  w  e.  u
)  /\  A. w  e.  u  ( v  i^i  w )  e.  u  /\  ( (  _I  |`  X ) 
C_  v  /\  `' v  e.  u  /\  E. w  e.  u  ( w  o.  w ) 
C_  v ) ) ) }  C_  { u  |  u  C_  ~P ( X  X.  X ) }
20 df-pw 4160 . . . 4  |-  ~P ~P ( X  X.  X
)  =  { u  |  u  C_  ~P ( X  X.  X ) }
2119, 20sseqtr4i 3638 . . 3  |-  { u  |  ( u  C_  ~P ( X  X.  X
)  /\  ( X  X.  X )  e.  u  /\  A. v  e.  u  ( A. w  e.  ~P  ( X  X.  X
) ( v  C_  w  ->  w  e.  u
)  /\  A. w  e.  u  ( v  i^i  w )  e.  u  /\  ( (  _I  |`  X ) 
C_  v  /\  `' v  e.  u  /\  E. w  e.  u  ( w  o.  w ) 
C_  v ) ) ) }  C_  ~P ~P ( X  X.  X
)
22 sqxpexg 6963 . . . 4  |-  ( X  e.  V  ->  ( X  X.  X )  e. 
_V )
23 pwexg 4850 . . . 4  |-  ( ( X  X.  X )  e.  _V  ->  ~P ( X  X.  X
)  e.  _V )
24 pwexg 4850 . . . 4  |-  ( ~P ( X  X.  X
)  e.  _V  ->  ~P ~P ( X  X.  X )  e.  _V )
2522, 23, 243syl 18 . . 3  |-  ( X  e.  V  ->  ~P ~P ( X  X.  X
)  e.  _V )
26 ssexg 4804 . . 3  |-  ( ( { u  |  ( u  C_  ~P ( X  X.  X )  /\  ( X  X.  X
)  e.  u  /\  A. v  e.  u  ( A. w  e.  ~P  ( X  X.  X
) ( v  C_  w  ->  w  e.  u
)  /\  A. w  e.  u  ( v  i^i  w )  e.  u  /\  ( (  _I  |`  X ) 
C_  v  /\  `' v  e.  u  /\  E. w  e.  u  ( w  o.  w ) 
C_  v ) ) ) }  C_  ~P ~P ( X  X.  X
)  /\  ~P ~P ( X  X.  X
)  e.  _V )  ->  { u  |  ( u  C_  ~P ( X  X.  X )  /\  ( X  X.  X
)  e.  u  /\  A. v  e.  u  ( A. w  e.  ~P  ( X  X.  X
) ( v  C_  w  ->  w  e.  u
)  /\  A. w  e.  u  ( v  i^i  w )  e.  u  /\  ( (  _I  |`  X ) 
C_  v  /\  `' v  e.  u  /\  E. w  e.  u  ( w  o.  w ) 
C_  v ) ) ) }  e.  _V )
2721, 25, 26sylancr 695 . 2  |-  ( X  e.  V  ->  { u  |  ( u  C_  ~P ( X  X.  X
)  /\  ( X  X.  X )  e.  u  /\  A. v  e.  u  ( A. w  e.  ~P  ( X  X.  X
) ( v  C_  w  ->  w  e.  u
)  /\  A. w  e.  u  ( v  i^i  w )  e.  u  /\  ( (  _I  |`  X ) 
C_  v  /\  `' v  e.  u  /\  E. w  e.  u  ( w  o.  w ) 
C_  v ) ) ) }  e.  _V )
282, 16, 17, 27fvmptd 6288 1  |-  ( X  e.  V  ->  (UnifOn `  X )  =  {
u  |  ( u 
C_  ~P ( X  X.  X )  /\  ( X  X.  X )  e.  u  /\  A. v  e.  u  ( A. w  e.  ~P  ( X  X.  X ) ( v  C_  w  ->  w  e.  u )  /\  A. w  e.  u  ( v  i^i  w )  e.  u  /\  (
(  _I  |`  X ) 
C_  v  /\  `' v  e.  u  /\  E. w  e.  u  ( w  o.  w ) 
C_  v ) ) ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 1037    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574   ~Pcpw 4158    |-> cmpt 4729    _I cid 5023    X. cxp 5112   `'ccnv 5113    |` cres 5116    o. ccom 5118   ` cfv 5888  UnifOncust 22003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-res 5126  df-iota 5851  df-fun 5890  df-fv 5896  df-ust 22004
This theorem is referenced by:  isust  22007
  Copyright terms: Public domain W3C validator