MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wemaplem3 Structured version   Visualization version   Unicode version

Theorem wemaplem3 8453
Description: Lemma for wemapso 8456. Transitivity. (Contributed by Stefan O'Rear, 17-Jan-2015.)
Hypotheses
Ref Expression
wemapso.t  |-  T  =  { <. x ,  y
>.  |  E. z  e.  A  ( (
x `  z ) S ( y `  z )  /\  A. w  e.  A  (
w R z  -> 
( x `  w
)  =  ( y `
 w ) ) ) }
wemaplem2.a  |-  ( ph  ->  A  e.  _V )
wemaplem2.p  |-  ( ph  ->  P  e.  ( B  ^m  A ) )
wemaplem2.x  |-  ( ph  ->  X  e.  ( B  ^m  A ) )
wemaplem2.q  |-  ( ph  ->  Q  e.  ( B  ^m  A ) )
wemaplem2.r  |-  ( ph  ->  R  Or  A )
wemaplem2.s  |-  ( ph  ->  S  Po  B )
wemaplem3.px  |-  ( ph  ->  P T X )
wemaplem3.xq  |-  ( ph  ->  X T Q )
Assertion
Ref Expression
wemaplem3  |-  ( ph  ->  P T Q )
Distinct variable groups:    x, B    x, w, y, z, X   
w, A, x, y, z    w, P, x, y, z    w, Q, x, y, z    w, R, x, y, z    w, S, x, y, z
Allowed substitution hints:    ph( x, y, z, w)    B( y,
z, w)    T( x, y, z, w)

Proof of Theorem wemaplem3
Dummy variables  a 
b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wemaplem3.px . . 3  |-  ( ph  ->  P T X )
2 wemaplem2.p . . . 4  |-  ( ph  ->  P  e.  ( B  ^m  A ) )
3 wemaplem2.x . . . 4  |-  ( ph  ->  X  e.  ( B  ^m  A ) )
4 wemapso.t . . . . 5  |-  T  =  { <. x ,  y
>.  |  E. z  e.  A  ( (
x `  z ) S ( y `  z )  /\  A. w  e.  A  (
w R z  -> 
( x `  w
)  =  ( y `
 w ) ) ) }
54wemaplem1 8451 . . . 4  |-  ( ( P  e.  ( B  ^m  A )  /\  X  e.  ( B  ^m  A ) )  -> 
( P T X  <->  E. a  e.  A  ( ( P `  a ) S ( X `  a )  /\  A. c  e.  A  ( c R a  ->  ( P `  c )  =  ( X `  c ) ) ) ) )
62, 3, 5syl2anc 693 . . 3  |-  ( ph  ->  ( P T X  <->  E. a  e.  A  ( ( P `  a ) S ( X `  a )  /\  A. c  e.  A  ( c R a  ->  ( P `  c )  =  ( X `  c ) ) ) ) )
71, 6mpbid 222 . 2  |-  ( ph  ->  E. a  e.  A  ( ( P `  a ) S ( X `  a )  /\  A. c  e.  A  ( c R a  ->  ( P `  c )  =  ( X `  c ) ) ) )
8 wemaplem3.xq . . 3  |-  ( ph  ->  X T Q )
9 wemaplem2.q . . . 4  |-  ( ph  ->  Q  e.  ( B  ^m  A ) )
104wemaplem1 8451 . . . 4  |-  ( ( X  e.  ( B  ^m  A )  /\  Q  e.  ( B  ^m  A ) )  -> 
( X T Q  <->  E. b  e.  A  ( ( X `  b ) S ( Q `  b )  /\  A. c  e.  A  ( c R b  ->  ( X `  c )  =  ( Q `  c ) ) ) ) )
113, 9, 10syl2anc 693 . . 3  |-  ( ph  ->  ( X T Q  <->  E. b  e.  A  ( ( X `  b ) S ( Q `  b )  /\  A. c  e.  A  ( c R b  ->  ( X `  c )  =  ( Q `  c ) ) ) ) )
128, 11mpbid 222 . 2  |-  ( ph  ->  E. b  e.  A  ( ( X `  b ) S ( Q `  b )  /\  A. c  e.  A  ( c R b  ->  ( X `  c )  =  ( Q `  c ) ) ) )
13 wemaplem2.a . . . . . 6  |-  ( ph  ->  A  e.  _V )
1413ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  (
a  e.  A  /\  ( ( P `  a ) S ( X `  a )  /\  A. c  e.  A  ( c R a  ->  ( P `  c )  =  ( X `  c ) ) ) ) )  /\  ( b  e.  A  /\  ( ( X `  b ) S ( Q `  b )  /\  A. c  e.  A  (
c R b  -> 
( X `  c
)  =  ( Q `
 c ) ) ) ) )  ->  A  e.  _V )
152ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  (
a  e.  A  /\  ( ( P `  a ) S ( X `  a )  /\  A. c  e.  A  ( c R a  ->  ( P `  c )  =  ( X `  c ) ) ) ) )  /\  ( b  e.  A  /\  ( ( X `  b ) S ( Q `  b )  /\  A. c  e.  A  (
c R b  -> 
( X `  c
)  =  ( Q `
 c ) ) ) ) )  ->  P  e.  ( B  ^m  A ) )
163ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  (
a  e.  A  /\  ( ( P `  a ) S ( X `  a )  /\  A. c  e.  A  ( c R a  ->  ( P `  c )  =  ( X `  c ) ) ) ) )  /\  ( b  e.  A  /\  ( ( X `  b ) S ( Q `  b )  /\  A. c  e.  A  (
c R b  -> 
( X `  c
)  =  ( Q `
 c ) ) ) ) )  ->  X  e.  ( B  ^m  A ) )
179ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  (
a  e.  A  /\  ( ( P `  a ) S ( X `  a )  /\  A. c  e.  A  ( c R a  ->  ( P `  c )  =  ( X `  c ) ) ) ) )  /\  ( b  e.  A  /\  ( ( X `  b ) S ( Q `  b )  /\  A. c  e.  A  (
c R b  -> 
( X `  c
)  =  ( Q `
 c ) ) ) ) )  ->  Q  e.  ( B  ^m  A ) )
18 wemaplem2.r . . . . . 6  |-  ( ph  ->  R  Or  A )
1918ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  (
a  e.  A  /\  ( ( P `  a ) S ( X `  a )  /\  A. c  e.  A  ( c R a  ->  ( P `  c )  =  ( X `  c ) ) ) ) )  /\  ( b  e.  A  /\  ( ( X `  b ) S ( Q `  b )  /\  A. c  e.  A  (
c R b  -> 
( X `  c
)  =  ( Q `
 c ) ) ) ) )  ->  R  Or  A )
20 wemaplem2.s . . . . . 6  |-  ( ph  ->  S  Po  B )
2120ad2antrr 762 . . . . 5  |-  ( ( ( ph  /\  (
a  e.  A  /\  ( ( P `  a ) S ( X `  a )  /\  A. c  e.  A  ( c R a  ->  ( P `  c )  =  ( X `  c ) ) ) ) )  /\  ( b  e.  A  /\  ( ( X `  b ) S ( Q `  b )  /\  A. c  e.  A  (
c R b  -> 
( X `  c
)  =  ( Q `
 c ) ) ) ) )  ->  S  Po  B )
22 simplrl 800 . . . . 5  |-  ( ( ( ph  /\  (
a  e.  A  /\  ( ( P `  a ) S ( X `  a )  /\  A. c  e.  A  ( c R a  ->  ( P `  c )  =  ( X `  c ) ) ) ) )  /\  ( b  e.  A  /\  ( ( X `  b ) S ( Q `  b )  /\  A. c  e.  A  (
c R b  -> 
( X `  c
)  =  ( Q `
 c ) ) ) ) )  -> 
a  e.  A )
23 simp2rl 1130 . . . . . 6  |-  ( (
ph  /\  ( a  e.  A  /\  (
( P `  a
) S ( X `
 a )  /\  A. c  e.  A  ( c R a  -> 
( P `  c
)  =  ( X `
 c ) ) ) )  /\  (
b  e.  A  /\  ( ( X `  b ) S ( Q `  b )  /\  A. c  e.  A  ( c R b  ->  ( X `  c )  =  ( Q `  c ) ) ) ) )  ->  ( P `  a ) S ( X `  a ) )
24233expa 1265 . . . . 5  |-  ( ( ( ph  /\  (
a  e.  A  /\  ( ( P `  a ) S ( X `  a )  /\  A. c  e.  A  ( c R a  ->  ( P `  c )  =  ( X `  c ) ) ) ) )  /\  ( b  e.  A  /\  ( ( X `  b ) S ( Q `  b )  /\  A. c  e.  A  (
c R b  -> 
( X `  c
)  =  ( Q `
 c ) ) ) ) )  -> 
( P `  a
) S ( X `
 a ) )
25 simprr 796 . . . . . 6  |-  ( ( a  e.  A  /\  ( ( P `  a ) S ( X `  a )  /\  A. c  e.  A  ( c R a  ->  ( P `  c )  =  ( X `  c ) ) ) )  ->  A. c  e.  A  ( c R a  ->  ( P `  c )  =  ( X `  c ) ) )
2625ad2antlr 763 . . . . 5  |-  ( ( ( ph  /\  (
a  e.  A  /\  ( ( P `  a ) S ( X `  a )  /\  A. c  e.  A  ( c R a  ->  ( P `  c )  =  ( X `  c ) ) ) ) )  /\  ( b  e.  A  /\  ( ( X `  b ) S ( Q `  b )  /\  A. c  e.  A  (
c R b  -> 
( X `  c
)  =  ( Q `
 c ) ) ) ) )  ->  A. c  e.  A  ( c R a  ->  ( P `  c )  =  ( X `  c ) ) )
27 simprl 794 . . . . 5  |-  ( ( ( ph  /\  (
a  e.  A  /\  ( ( P `  a ) S ( X `  a )  /\  A. c  e.  A  ( c R a  ->  ( P `  c )  =  ( X `  c ) ) ) ) )  /\  ( b  e.  A  /\  ( ( X `  b ) S ( Q `  b )  /\  A. c  e.  A  (
c R b  -> 
( X `  c
)  =  ( Q `
 c ) ) ) ) )  -> 
b  e.  A )
28 simprrl 804 . . . . 5  |-  ( ( ( ph  /\  (
a  e.  A  /\  ( ( P `  a ) S ( X `  a )  /\  A. c  e.  A  ( c R a  ->  ( P `  c )  =  ( X `  c ) ) ) ) )  /\  ( b  e.  A  /\  ( ( X `  b ) S ( Q `  b )  /\  A. c  e.  A  (
c R b  -> 
( X `  c
)  =  ( Q `
 c ) ) ) ) )  -> 
( X `  b
) S ( Q `
 b ) )
29 simprrr 805 . . . . 5  |-  ( ( ( ph  /\  (
a  e.  A  /\  ( ( P `  a ) S ( X `  a )  /\  A. c  e.  A  ( c R a  ->  ( P `  c )  =  ( X `  c ) ) ) ) )  /\  ( b  e.  A  /\  ( ( X `  b ) S ( Q `  b )  /\  A. c  e.  A  (
c R b  -> 
( X `  c
)  =  ( Q `
 c ) ) ) ) )  ->  A. c  e.  A  ( c R b  ->  ( X `  c )  =  ( Q `  c ) ) )
304, 14, 15, 16, 17, 19, 21, 22, 24, 26, 27, 28, 29wemaplem2 8452 . . . 4  |-  ( ( ( ph  /\  (
a  e.  A  /\  ( ( P `  a ) S ( X `  a )  /\  A. c  e.  A  ( c R a  ->  ( P `  c )  =  ( X `  c ) ) ) ) )  /\  ( b  e.  A  /\  ( ( X `  b ) S ( Q `  b )  /\  A. c  e.  A  (
c R b  -> 
( X `  c
)  =  ( Q `
 c ) ) ) ) )  ->  P T Q )
3130rexlimdvaa 3032 . . 3  |-  ( (
ph  /\  ( a  e.  A  /\  (
( P `  a
) S ( X `
 a )  /\  A. c  e.  A  ( c R a  -> 
( P `  c
)  =  ( X `
 c ) ) ) ) )  -> 
( E. b  e.  A  ( ( X `
 b ) S ( Q `  b
)  /\  A. c  e.  A  ( c R b  ->  ( X `  c )  =  ( Q `  c ) ) )  ->  P T Q ) )
3231rexlimdvaa 3032 . 2  |-  ( ph  ->  ( E. a  e.  A  ( ( P `
 a ) S ( X `  a
)  /\  A. c  e.  A  ( c R a  ->  ( P `  c )  =  ( X `  c ) ) )  ->  ( E. b  e.  A  ( ( X `  b ) S ( Q `  b )  /\  A. c  e.  A  (
c R b  -> 
( X `  c
)  =  ( Q `
 c ) ) )  ->  P T Q ) ) )
337, 12, 32mp2d 49 1  |-  ( ph  ->  P T Q )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200   class class class wbr 4653   {copab 4712    Po wpo 5033    Or wor 5034   ` cfv 5888  (class class class)co 6650    ^m cmap 7857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859
This theorem is referenced by:  wemappo  8454
  Copyright terms: Public domain W3C validator