MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wlkres Structured version   Visualization version   Unicode version

Theorem wlkres 26567
Description: The restriction  <. H ,  Q >. of a walk  <. F ,  P >. to an initial segment of the walk (of length  N) forms a walk on the subgraph  S consisting of the edges in the initial segment. Formerly proven directly for Eulerian paths, see eupthres 27075. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 3-May-2015.) (Revised by AV, 5-Mar-2021.)
Hypotheses
Ref Expression
wlkres.v  |-  V  =  (Vtx `  G )
wlkres.i  |-  I  =  (iEdg `  G )
wlkres.d  |-  ( ph  ->  F (Walks `  G
) P )
wlkres.n  |-  ( ph  ->  N  e.  ( 0..^ ( # `  F
) ) )
wlkres.s  |-  ( ph  ->  (Vtx `  S )  =  V )
wlkres.e  |-  ( ph  ->  (iEdg `  S )  =  ( I  |`  ( F " ( 0..^ N ) ) ) )
wlkres.h  |-  H  =  ( F  |`  (
0..^ N ) )
wlkres.q  |-  Q  =  ( P  |`  (
0 ... N ) )
Assertion
Ref Expression
wlkres  |-  ( ph  ->  H (Walks `  S
) Q )

Proof of Theorem wlkres
Dummy variables  k 
i  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wlkres.h . . 3  |-  H  =  ( F  |`  (
0..^ N ) )
2 wlkres.d . . . . . . . 8  |-  ( ph  ->  F (Walks `  G
) P )
3 wlkres.i . . . . . . . . 9  |-  I  =  (iEdg `  G )
43wlkf 26510 . . . . . . . 8  |-  ( F (Walks `  G ) P  ->  F  e. Word  dom  I )
5 wrdfn 13319 . . . . . . . 8  |-  ( F  e. Word  dom  I  ->  F  Fn  ( 0..^ (
# `  F )
) )
62, 4, 53syl 18 . . . . . . 7  |-  ( ph  ->  F  Fn  ( 0..^ ( # `  F
) ) )
7 wlkres.n . . . . . . . 8  |-  ( ph  ->  N  e.  ( 0..^ ( # `  F
) ) )
8 elfzouz2 12484 . . . . . . . 8  |-  ( N  e.  ( 0..^ (
# `  F )
)  ->  ( # `  F
)  e.  ( ZZ>= `  N ) )
9 fzoss2 12496 . . . . . . . 8  |-  ( (
# `  F )  e.  ( ZZ>= `  N )  ->  ( 0..^ N ) 
C_  ( 0..^ (
# `  F )
) )
107, 8, 93syl 18 . . . . . . 7  |-  ( ph  ->  ( 0..^ N ) 
C_  ( 0..^ (
# `  F )
) )
11 fnssres 6004 . . . . . . 7  |-  ( ( F  Fn  ( 0..^ ( # `  F
) )  /\  (
0..^ N )  C_  ( 0..^ ( # `  F
) ) )  -> 
( F  |`  (
0..^ N ) )  Fn  ( 0..^ N ) )
126, 10, 11syl2anc 693 . . . . . 6  |-  ( ph  ->  ( F  |`  (
0..^ N ) )  Fn  ( 0..^ N ) )
13 simpr 477 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 0..^ N ) )  ->  x  e.  ( 0..^ N ) )
14 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( i  =  x  ->  ( F `  i )  =  ( F `  x ) )
1514eqeq1d 2624 . . . . . . . . . . . . 13  |-  ( i  =  x  ->  (
( F `  i
)  =  ( ( F  |`  ( 0..^ N ) ) `  x )  <->  ( F `  x )  =  ( ( F  |`  (
0..^ N ) ) `
 x ) ) )
1615adantl 482 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 0..^ N ) )  /\  i  =  x )  ->  (
( F `  i
)  =  ( ( F  |`  ( 0..^ N ) ) `  x )  <->  ( F `  x )  =  ( ( F  |`  (
0..^ N ) ) `
 x ) ) )
17 fvres 6207 . . . . . . . . . . . . . 14  |-  ( x  e.  ( 0..^ N )  ->  ( ( F  |`  ( 0..^ N ) ) `  x
)  =  ( F `
 x ) )
1817adantl 482 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 0..^ N ) )  ->  ( ( F  |`  ( 0..^ N ) ) `  x )  =  ( F `  x ) )
1918eqcomd 2628 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 0..^ N ) )  ->  ( F `  x )  =  ( ( F  |`  (
0..^ N ) ) `
 x ) )
2013, 16, 19rspcedvd 3317 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 0..^ N ) )  ->  E. i  e.  ( 0..^ N ) ( F `  i )  =  ( ( F  |`  ( 0..^ N ) ) `  x ) )
216adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 0..^ N ) )  ->  F  Fn  (
0..^ ( # `  F
) ) )
2210adantr 481 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 0..^ N ) )  ->  ( 0..^ N )  C_  ( 0..^ ( # `  F
) ) )
2321, 22fvelimabd 6254 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 0..^ N ) )  ->  ( ( ( F  |`  ( 0..^ N ) ) `  x )  e.  ( F " ( 0..^ N ) )  <->  E. i  e.  ( 0..^ N ) ( F `  i
)  =  ( ( F  |`  ( 0..^ N ) ) `  x ) ) )
2420, 23mpbird 247 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 0..^ N ) )  ->  ( ( F  |`  ( 0..^ N ) ) `  x )  e.  ( F "
( 0..^ N ) ) )
252, 4syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  F  e. Word  dom  I
)
26 wrdf 13310 . . . . . . . . . . . . . 14  |-  ( F  e. Word  dom  I  ->  F : ( 0..^ (
# `  F )
) --> dom  I )
27 ffvelrn 6357 . . . . . . . . . . . . . . . . 17  |-  ( ( F : ( 0..^ ( # `  F
) ) --> dom  I  /\  x  e.  (
0..^ ( # `  F
) ) )  -> 
( F `  x
)  e.  dom  I
)
2827expcom 451 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( 0..^ (
# `  F )
)  ->  ( F : ( 0..^ (
# `  F )
) --> dom  I  ->  ( F `  x )  e.  dom  I ) )
2910sselda 3603 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( 0..^ N ) )  ->  x  e.  ( 0..^ ( # `  F
) ) )
3028, 29syl11 33 . . . . . . . . . . . . . . 15  |-  ( F : ( 0..^ (
# `  F )
) --> dom  I  ->  ( ( ph  /\  x  e.  ( 0..^ N ) )  ->  ( F `  x )  e.  dom  I ) )
3130expd 452 . . . . . . . . . . . . . 14  |-  ( F : ( 0..^ (
# `  F )
) --> dom  I  ->  (
ph  ->  ( x  e.  ( 0..^ N )  ->  ( F `  x )  e.  dom  I ) ) )
3226, 31syl 17 . . . . . . . . . . . . 13  |-  ( F  e. Word  dom  I  ->  (
ph  ->  ( x  e.  ( 0..^ N )  ->  ( F `  x )  e.  dom  I ) ) )
3325, 32mpcom 38 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  ( 0..^ N )  -> 
( F `  x
)  e.  dom  I
) )
3433imp 445 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 0..^ N ) )  ->  ( F `  x )  e.  dom  I )
3518, 34eqeltrd 2701 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 0..^ N ) )  ->  ( ( F  |`  ( 0..^ N ) ) `  x )  e.  dom  I )
3624, 35elind 3798 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 0..^ N ) )  ->  ( ( F  |`  ( 0..^ N ) ) `  x )  e.  ( ( F
" ( 0..^ N ) )  i^i  dom  I ) )
37 dmres 5419 . . . . . . . . 9  |-  dom  (
I  |`  ( F "
( 0..^ N ) ) )  =  ( ( F " (
0..^ N ) )  i^i  dom  I )
3836, 37syl6eleqr 2712 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 0..^ N ) )  ->  ( ( F  |`  ( 0..^ N ) ) `  x )  e.  dom  ( I  |`  ( F " (
0..^ N ) ) ) )
39 wlkres.e . . . . . . . . . . 11  |-  ( ph  ->  (iEdg `  S )  =  ( I  |`  ( F " ( 0..^ N ) ) ) )
4039dmeqd 5326 . . . . . . . . . 10  |-  ( ph  ->  dom  (iEdg `  S
)  =  dom  (
I  |`  ( F "
( 0..^ N ) ) ) )
4140eleq2d 2687 . . . . . . . . 9  |-  ( ph  ->  ( ( ( F  |`  ( 0..^ N ) ) `  x )  e.  dom  (iEdg `  S )  <->  ( ( F  |`  ( 0..^ N ) ) `  x
)  e.  dom  (
I  |`  ( F "
( 0..^ N ) ) ) ) )
4241adantr 481 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 0..^ N ) )  ->  ( ( ( F  |`  ( 0..^ N ) ) `  x )  e.  dom  (iEdg `  S )  <->  ( ( F  |`  ( 0..^ N ) ) `  x
)  e.  dom  (
I  |`  ( F "
( 0..^ N ) ) ) ) )
4338, 42mpbird 247 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 0..^ N ) )  ->  ( ( F  |`  ( 0..^ N ) ) `  x )  e.  dom  (iEdg `  S ) )
4443ralrimiva 2966 . . . . . 6  |-  ( ph  ->  A. x  e.  ( 0..^ N ) ( ( F  |`  (
0..^ N ) ) `
 x )  e. 
dom  (iEdg `  S )
)
45 ffnfv 6388 . . . . . 6  |-  ( ( F  |`  ( 0..^ N ) ) : ( 0..^ N ) --> dom  (iEdg `  S
)  <->  ( ( F  |`  ( 0..^ N ) )  Fn  ( 0..^ N )  /\  A. x  e.  ( 0..^ N ) ( ( F  |`  ( 0..^ N ) ) `  x )  e.  dom  (iEdg `  S ) ) )
4612, 44, 45sylanbrc 698 . . . . 5  |-  ( ph  ->  ( F  |`  (
0..^ N ) ) : ( 0..^ N ) --> dom  (iEdg `  S
) )
47 fzossfz 12488 . . . . . . . . 9  |-  ( 0..^ ( # `  F
) )  C_  (
0 ... ( # `  F
) )
4847, 7sseldi 3601 . . . . . . . 8  |-  ( ph  ->  N  e.  ( 0 ... ( # `  F
) ) )
49 wlkreslem0 26565 . . . . . . . 8  |-  ( ( F  e. Word  dom  I  /\  N  e.  (
0 ... ( # `  F
) ) )  -> 
( # `  ( F  |`  ( 0..^ N ) ) )  =  N )
5025, 48, 49syl2anc 693 . . . . . . 7  |-  ( ph  ->  ( # `  ( F  |`  ( 0..^ N ) ) )  =  N )
5150oveq2d 6666 . . . . . 6  |-  ( ph  ->  ( 0..^ ( # `  ( F  |`  (
0..^ N ) ) ) )  =  ( 0..^ N ) )
5251feq2d 6031 . . . . 5  |-  ( ph  ->  ( ( F  |`  ( 0..^ N ) ) : ( 0..^ (
# `  ( F  |`  ( 0..^ N ) ) ) ) --> dom  (iEdg `  S )  <->  ( F  |`  ( 0..^ N ) ) : ( 0..^ N ) --> dom  (iEdg `  S
) ) )
5346, 52mpbird 247 . . . 4  |-  ( ph  ->  ( F  |`  (
0..^ N ) ) : ( 0..^ (
# `  ( F  |`  ( 0..^ N ) ) ) ) --> dom  (iEdg `  S )
)
54 iswrdb 13311 . . . 4  |-  ( ( F  |`  ( 0..^ N ) )  e. Word  dom  (iEdg `  S )  <->  ( F  |`  ( 0..^ N ) ) : ( 0..^ ( # `  ( F  |`  (
0..^ N ) ) ) ) --> dom  (iEdg `  S ) )
5553, 54sylibr 224 . . 3  |-  ( ph  ->  ( F  |`  (
0..^ N ) )  e. Word  dom  (iEdg `  S
) )
561, 55syl5eqel 2705 . 2  |-  ( ph  ->  H  e. Word  dom  (iEdg `  S ) )
57 wlkres.v . . . . . . . 8  |-  V  =  (Vtx `  G )
5857wlkp 26512 . . . . . . 7  |-  ( F (Walks `  G ) P  ->  P : ( 0 ... ( # `  F ) ) --> V )
592, 58syl 17 . . . . . 6  |-  ( ph  ->  P : ( 0 ... ( # `  F
) ) --> V )
60 wlkres.s . . . . . . 7  |-  ( ph  ->  (Vtx `  S )  =  V )
6160feq3d 6032 . . . . . 6  |-  ( ph  ->  ( P : ( 0 ... ( # `  F ) ) --> (Vtx
`  S )  <->  P :
( 0 ... ( # `
 F ) ) --> V ) )
6259, 61mpbird 247 . . . . 5  |-  ( ph  ->  P : ( 0 ... ( # `  F
) ) --> (Vtx `  S ) )
63 elfzuz3 12339 . . . . . 6  |-  ( N  e.  ( 0 ... ( # `  F
) )  ->  ( # `
 F )  e.  ( ZZ>= `  N )
)
64 fzss2 12381 . . . . . 6  |-  ( (
# `  F )  e.  ( ZZ>= `  N )  ->  ( 0 ... N
)  C_  ( 0 ... ( # `  F
) ) )
6548, 63, 643syl 18 . . . . 5  |-  ( ph  ->  ( 0 ... N
)  C_  ( 0 ... ( # `  F
) ) )
6662, 65fssresd 6071 . . . 4  |-  ( ph  ->  ( P  |`  (
0 ... N ) ) : ( 0 ... N ) --> (Vtx `  S ) )
671fveq2i 6194 . . . . . . 7  |-  ( # `  H )  =  (
# `  ( F  |`  ( 0..^ N ) ) )
6867, 50syl5eq 2668 . . . . . 6  |-  ( ph  ->  ( # `  H
)  =  N )
6968oveq2d 6666 . . . . 5  |-  ( ph  ->  ( 0 ... ( # `
 H ) )  =  ( 0 ... N ) )
7069feq2d 6031 . . . 4  |-  ( ph  ->  ( ( P  |`  ( 0 ... N
) ) : ( 0 ... ( # `  H ) ) --> (Vtx
`  S )  <->  ( P  |`  ( 0 ... N
) ) : ( 0 ... N ) --> (Vtx `  S )
) )
7166, 70mpbird 247 . . 3  |-  ( ph  ->  ( P  |`  (
0 ... N ) ) : ( 0 ... ( # `  H
) ) --> (Vtx `  S ) )
72 wlkres.q . . . 4  |-  Q  =  ( P  |`  (
0 ... N ) )
7372feq1i 6036 . . 3  |-  ( Q : ( 0 ... ( # `  H
) ) --> (Vtx `  S )  <->  ( P  |`  ( 0 ... N
) ) : ( 0 ... ( # `  H ) ) --> (Vtx
`  S ) )
7471, 73sylibr 224 . 2  |-  ( ph  ->  Q : ( 0 ... ( # `  H
) ) --> (Vtx `  S ) )
75 wlkv 26508 . . . . . . 7  |-  ( F (Walks `  G ) P  ->  ( G  e. 
_V  /\  F  e.  _V  /\  P  e.  _V ) )
7657, 3iswlk 26506 . . . . . . . 8  |-  ( ( G  e.  _V  /\  F  e.  _V  /\  P  e.  _V )  ->  ( F (Walks `  G ) P 
<->  ( F  e. Word  dom  I  /\  P : ( 0 ... ( # `  F ) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F ) )if- ( ( P `  k
)  =  ( P `
 ( k  +  1 ) ) ,  ( I `  ( F `  k )
)  =  { ( P `  k ) } ,  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k )
) ) ) ) )
7776biimpd 219 . . . . . . 7  |-  ( ( G  e.  _V  /\  F  e.  _V  /\  P  e.  _V )  ->  ( F (Walks `  G ) P  ->  ( F  e. Word  dom  I  /\  P :
( 0 ... ( # `
 F ) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F ) )if- ( ( P `  k
)  =  ( P `
 ( k  +  1 ) ) ,  ( I `  ( F `  k )
)  =  { ( P `  k ) } ,  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k )
) ) ) ) )
7875, 77mpcom 38 . . . . . 6  |-  ( F (Walks `  G ) P  ->  ( F  e. Word  dom  I  /\  P :
( 0 ... ( # `
 F ) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F ) )if- ( ( P `  k
)  =  ( P `
 ( k  +  1 ) ) ,  ( I `  ( F `  k )
)  =  { ( P `  k ) } ,  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k )
) ) ) )
792, 78syl 17 . . . . 5  |-  ( ph  ->  ( F  e. Word  dom  I  /\  P : ( 0 ... ( # `  F ) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F ) )if- ( ( P `  k
)  =  ( P `
 ( k  +  1 ) ) ,  ( I `  ( F `  k )
)  =  { ( P `  k ) } ,  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k )
) ) ) )
8079adantr 481 . . . 4  |-  ( (
ph  /\  x  e.  ( 0..^ ( # `  H
) ) )  -> 
( F  e. Word  dom  I  /\  P : ( 0 ... ( # `  F ) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F ) )if- ( ( P `  k
)  =  ( P `
 ( k  +  1 ) ) ,  ( I `  ( F `  k )
)  =  { ( P `  k ) } ,  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k )
) ) ) )
8168oveq2d 6666 . . . . . . . . . . 11  |-  ( ph  ->  ( 0..^ ( # `  H ) )  =  ( 0..^ N ) )
8281eleq2d 2687 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  ( 0..^ ( # `  H
) )  <->  x  e.  ( 0..^ N ) ) )
8372fveq1i 6192 . . . . . . . . . . . . 13  |-  ( Q `
 x )  =  ( ( P  |`  ( 0 ... N
) ) `  x
)
84 fzossfz 12488 . . . . . . . . . . . . . . . 16  |-  ( 0..^ N )  C_  (
0 ... N )
8584a1i 11 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 0..^ N ) 
C_  ( 0 ... N ) )
8685sselda 3603 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 0..^ N ) )  ->  x  e.  ( 0 ... N ) )
8786fvresd 6208 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 0..^ N ) )  ->  ( ( P  |`  ( 0 ... N
) ) `  x
)  =  ( P `
 x ) )
8883, 87syl5req 2669 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 0..^ N ) )  ->  ( P `  x )  =  ( Q `  x ) )
8972fveq1i 6192 . . . . . . . . . . . . 13  |-  ( Q `
 ( x  + 
1 ) )  =  ( ( P  |`  ( 0 ... N
) ) `  (
x  +  1 ) )
90 fzofzp1 12565 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( 0..^ N )  ->  ( x  +  1 )  e.  ( 0 ... N
) )
9190adantl 482 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 0..^ N ) )  ->  ( x  + 
1 )  e.  ( 0 ... N ) )
9291fvresd 6208 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 0..^ N ) )  ->  ( ( P  |`  ( 0 ... N
) ) `  (
x  +  1 ) )  =  ( P `
 ( x  + 
1 ) ) )
9389, 92syl5req 2669 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 0..^ N ) )  ->  ( P `  ( x  +  1
) )  =  ( Q `  ( x  +  1 ) ) )
9488, 93jca 554 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 0..^ N ) )  ->  ( ( P `
 x )  =  ( Q `  x
)  /\  ( P `  ( x  +  1 ) )  =  ( Q `  ( x  +  1 ) ) ) )
9594ex 450 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  ( 0..^ N )  -> 
( ( P `  x )  =  ( Q `  x )  /\  ( P `  ( x  +  1
) )  =  ( Q `  ( x  +  1 ) ) ) ) )
9682, 95sylbid 230 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( 0..^ ( # `  H
) )  ->  (
( P `  x
)  =  ( Q `
 x )  /\  ( P `  ( x  +  1 ) )  =  ( Q `  ( x  +  1
) ) ) ) )
9796imp 445 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 0..^ ( # `  H
) ) )  -> 
( ( P `  x )  =  ( Q `  x )  /\  ( P `  ( x  +  1
) )  =  ( Q `  ( x  +  1 ) ) ) )
9825ancli 574 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ph  /\  F  e. Word  dom  I ) )
9926ffund 6049 . . . . . . . . . . . . . . . . 17  |-  ( F  e. Word  dom  I  ->  Fun 
F )
10099adantl 482 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  F  e. Word  dom  I )  ->  Fun  F )
101100adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  F  e. Word  dom  I )  /\  x  e.  ( 0..^ N ) )  ->  Fun  F )
102 fdm 6051 . . . . . . . . . . . . . . . . . 18  |-  ( F : ( 0..^ (
# `  F )
) --> dom  I  ->  dom 
F  =  ( 0..^ ( # `  F
) ) )
103 sseq2 3627 . . . . . . . . . . . . . . . . . . 19  |-  ( dom 
F  =  ( 0..^ ( # `  F
) )  ->  (
( 0..^ N ) 
C_  dom  F  <->  ( 0..^ N )  C_  (
0..^ ( # `  F
) ) ) )
10410, 103syl5ibr 236 . . . . . . . . . . . . . . . . . 18  |-  ( dom 
F  =  ( 0..^ ( # `  F
) )  ->  ( ph  ->  ( 0..^ N )  C_  dom  F ) )
10526, 102, 1043syl 18 . . . . . . . . . . . . . . . . 17  |-  ( F  e. Word  dom  I  ->  (
ph  ->  ( 0..^ N )  C_  dom  F ) )
106105impcom 446 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  F  e. Word  dom  I )  ->  (
0..^ N )  C_  dom  F )
107106adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  F  e. Word  dom  I )  /\  x  e.  ( 0..^ N ) )  -> 
( 0..^ N ) 
C_  dom  F )
108 simpr 477 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  F  e. Word  dom  I )  /\  x  e.  ( 0..^ N ) )  ->  x  e.  ( 0..^ N ) )
109101, 107, 108resfvresima 6494 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  F  e. Word  dom  I )  /\  x  e.  ( 0..^ N ) )  -> 
( ( I  |`  ( F " ( 0..^ N ) ) ) `
 ( ( F  |`  ( 0..^ N ) ) `  x ) )  =  ( I `
 ( F `  x ) ) )
11098, 109sylan 488 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 0..^ N ) )  ->  ( ( I  |`  ( F " (
0..^ N ) ) ) `  ( ( F  |`  ( 0..^ N ) ) `  x ) )  =  ( I `  ( F `  x )
) )
111110eqcomd 2628 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 0..^ N ) )  ->  ( I `  ( F `  x ) )  =  ( ( I  |`  ( F " ( 0..^ N ) ) ) `  (
( F  |`  (
0..^ N ) ) `
 x ) ) )
112111ex 450 . . . . . . . . . . 11  |-  ( ph  ->  ( x  e.  ( 0..^ N )  -> 
( I `  ( F `  x )
)  =  ( ( I  |`  ( F " ( 0..^ N ) ) ) `  (
( F  |`  (
0..^ N ) ) `
 x ) ) ) )
11382, 112sylbid 230 . . . . . . . . . 10  |-  ( ph  ->  ( x  e.  ( 0..^ ( # `  H
) )  ->  (
I `  ( F `  x ) )  =  ( ( I  |`  ( F " ( 0..^ N ) ) ) `
 ( ( F  |`  ( 0..^ N ) ) `  x ) ) ) )
114113imp 445 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 0..^ ( # `  H
) ) )  -> 
( I `  ( F `  x )
)  =  ( ( I  |`  ( F " ( 0..^ N ) ) ) `  (
( F  |`  (
0..^ N ) ) `
 x ) ) )
11539adantr 481 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 0..^ ( # `  H
) ) )  -> 
(iEdg `  S )  =  ( I  |`  ( F " ( 0..^ N ) ) ) )
1161fveq1i 6192 . . . . . . . . . . 11  |-  ( H `
 x )  =  ( ( F  |`  ( 0..^ N ) ) `
 x )
117116a1i 11 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 0..^ ( # `  H
) ) )  -> 
( H `  x
)  =  ( ( F  |`  ( 0..^ N ) ) `  x ) )
118115, 117fveq12d 6197 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 0..^ ( # `  H
) ) )  -> 
( (iEdg `  S
) `  ( H `  x ) )  =  ( ( I  |`  ( F " ( 0..^ N ) ) ) `
 ( ( F  |`  ( 0..^ N ) ) `  x ) ) )
119114, 118eqtr4d 2659 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 0..^ ( # `  H
) ) )  -> 
( I `  ( F `  x )
)  =  ( (iEdg `  S ) `  ( H `  x )
) )
12097, 119jca 554 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 0..^ ( # `  H
) ) )  -> 
( ( ( P `
 x )  =  ( Q `  x
)  /\  ( P `  ( x  +  1 ) )  =  ( Q `  ( x  +  1 ) ) )  /\  ( I `
 ( F `  x ) )  =  ( (iEdg `  S
) `  ( H `  x ) ) ) )
1217, 8syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( # `  F
)  e.  ( ZZ>= `  N ) )
1221a1i 11 . . . . . . . . . . . . . 14  |-  ( ph  ->  H  =  ( F  |`  ( 0..^ N ) ) )
123122fveq2d 6195 . . . . . . . . . . . . 13  |-  ( ph  ->  ( # `  H
)  =  ( # `  ( F  |`  (
0..^ N ) ) ) )
124123, 50eqtrd 2656 . . . . . . . . . . . 12  |-  ( ph  ->  ( # `  H
)  =  N )
125124fveq2d 6195 . . . . . . . . . . 11  |-  ( ph  ->  ( ZZ>= `  ( # `  H
) )  =  (
ZZ>= `  N ) )
126121, 125eleqtrrd 2704 . . . . . . . . . 10  |-  ( ph  ->  ( # `  F
)  e.  ( ZZ>= `  ( # `  H ) ) )
127 fzoss2 12496 . . . . . . . . . 10  |-  ( (
# `  F )  e.  ( ZZ>= `  ( # `  H
) )  ->  (
0..^ ( # `  H
) )  C_  (
0..^ ( # `  F
) ) )
128126, 127syl 17 . . . . . . . . 9  |-  ( ph  ->  ( 0..^ ( # `  H ) )  C_  ( 0..^ ( # `  F
) ) )
129128sselda 3603 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 0..^ ( # `  H
) ) )  ->  x  e.  ( 0..^ ( # `  F
) ) )
130 wkslem1 26503 . . . . . . . . 9  |-  ( k  =  x  ->  (if- ( ( P `  k )  =  ( P `  ( k  +  1 ) ) ,  ( I `  ( F `  k ) )  =  { ( P `  k ) } ,  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k )
) )  <-> if- ( ( P `  x )  =  ( P `  ( x  +  1
) ) ,  ( I `  ( F `
 x ) )  =  { ( P `
 x ) } ,  { ( P `
 x ) ,  ( P `  (
x  +  1 ) ) }  C_  (
I `  ( F `  x ) ) ) ) )
131130rspcv 3305 . . . . . . . 8  |-  ( x  e.  ( 0..^ (
# `  F )
)  ->  ( A. k  e.  ( 0..^ ( # `  F
) )if- ( ( P `  k )  =  ( P `  ( k  +  1 ) ) ,  ( I `  ( F `
 k ) )  =  { ( P `
 k ) } ,  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  C_  (
I `  ( F `  k ) ) )  -> if- ( ( P `
 x )  =  ( P `  (
x  +  1 ) ) ,  ( I `
 ( F `  x ) )  =  { ( P `  x ) } ,  { ( P `  x ) ,  ( P `  ( x  +  1 ) ) }  C_  ( I `  ( F `  x
) ) ) ) )
132129, 131syl 17 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 0..^ ( # `  H
) ) )  -> 
( A. k  e.  ( 0..^ ( # `  F ) )if- ( ( P `  k
)  =  ( P `
 ( k  +  1 ) ) ,  ( I `  ( F `  k )
)  =  { ( P `  k ) } ,  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k )
) )  -> if- ( ( P `  x )  =  ( P `  ( x  +  1
) ) ,  ( I `  ( F `
 x ) )  =  { ( P `
 x ) } ,  { ( P `
 x ) ,  ( P `  (
x  +  1 ) ) }  C_  (
I `  ( F `  x ) ) ) ) )
133 eqeq12 2635 . . . . . . . . . 10  |-  ( ( ( P `  x
)  =  ( Q `
 x )  /\  ( P `  ( x  +  1 ) )  =  ( Q `  ( x  +  1
) ) )  -> 
( ( P `  x )  =  ( P `  ( x  +  1 ) )  <-> 
( Q `  x
)  =  ( Q `
 ( x  + 
1 ) ) ) )
134133adantr 481 . . . . . . . . 9  |-  ( ( ( ( P `  x )  =  ( Q `  x )  /\  ( P `  ( x  +  1
) )  =  ( Q `  ( x  +  1 ) ) )  /\  ( I `
 ( F `  x ) )  =  ( (iEdg `  S
) `  ( H `  x ) ) )  ->  ( ( P `
 x )  =  ( P `  (
x  +  1 ) )  <->  ( Q `  x )  =  ( Q `  ( x  +  1 ) ) ) )
135 simpr 477 . . . . . . . . . 10  |-  ( ( ( ( P `  x )  =  ( Q `  x )  /\  ( P `  ( x  +  1
) )  =  ( Q `  ( x  +  1 ) ) )  /\  ( I `
 ( F `  x ) )  =  ( (iEdg `  S
) `  ( H `  x ) ) )  ->  ( I `  ( F `  x ) )  =  ( (iEdg `  S ) `  ( H `  x )
) )
136 sneq 4187 . . . . . . . . . . . 12  |-  ( ( P `  x )  =  ( Q `  x )  ->  { ( P `  x ) }  =  { ( Q `  x ) } )
137136adantr 481 . . . . . . . . . . 11  |-  ( ( ( P `  x
)  =  ( Q `
 x )  /\  ( P `  ( x  +  1 ) )  =  ( Q `  ( x  +  1
) ) )  ->  { ( P `  x ) }  =  { ( Q `  x ) } )
138137adantr 481 . . . . . . . . . 10  |-  ( ( ( ( P `  x )  =  ( Q `  x )  /\  ( P `  ( x  +  1
) )  =  ( Q `  ( x  +  1 ) ) )  /\  ( I `
 ( F `  x ) )  =  ( (iEdg `  S
) `  ( H `  x ) ) )  ->  { ( P `
 x ) }  =  { ( Q `
 x ) } )
139135, 138eqeq12d 2637 . . . . . . . . 9  |-  ( ( ( ( P `  x )  =  ( Q `  x )  /\  ( P `  ( x  +  1
) )  =  ( Q `  ( x  +  1 ) ) )  /\  ( I `
 ( F `  x ) )  =  ( (iEdg `  S
) `  ( H `  x ) ) )  ->  ( ( I `
 ( F `  x ) )  =  { ( P `  x ) }  <->  ( (iEdg `  S ) `  ( H `  x )
)  =  { ( Q `  x ) } ) )
140 preq12 4270 . . . . . . . . . . 11  |-  ( ( ( P `  x
)  =  ( Q `
 x )  /\  ( P `  ( x  +  1 ) )  =  ( Q `  ( x  +  1
) ) )  ->  { ( P `  x ) ,  ( P `  ( x  +  1 ) ) }  =  { ( Q `  x ) ,  ( Q `  ( x  +  1
) ) } )
141140adantr 481 . . . . . . . . . 10  |-  ( ( ( ( P `  x )  =  ( Q `  x )  /\  ( P `  ( x  +  1
) )  =  ( Q `  ( x  +  1 ) ) )  /\  ( I `
 ( F `  x ) )  =  ( (iEdg `  S
) `  ( H `  x ) ) )  ->  { ( P `
 x ) ,  ( P `  (
x  +  1 ) ) }  =  {
( Q `  x
) ,  ( Q `
 ( x  + 
1 ) ) } )
142141, 135sseq12d 3634 . . . . . . . . 9  |-  ( ( ( ( P `  x )  =  ( Q `  x )  /\  ( P `  ( x  +  1
) )  =  ( Q `  ( x  +  1 ) ) )  /\  ( I `
 ( F `  x ) )  =  ( (iEdg `  S
) `  ( H `  x ) ) )  ->  ( { ( P `  x ) ,  ( P `  ( x  +  1
) ) }  C_  ( I `  ( F `  x )
)  <->  { ( Q `  x ) ,  ( Q `  ( x  +  1 ) ) }  C_  ( (iEdg `  S ) `  ( H `  x )
) ) )
143134, 139, 142ifpbi123d 1027 . . . . . . . 8  |-  ( ( ( ( P `  x )  =  ( Q `  x )  /\  ( P `  ( x  +  1
) )  =  ( Q `  ( x  +  1 ) ) )  /\  ( I `
 ( F `  x ) )  =  ( (iEdg `  S
) `  ( H `  x ) ) )  ->  (if- ( ( P `  x )  =  ( P `  ( x  +  1
) ) ,  ( I `  ( F `
 x ) )  =  { ( P `
 x ) } ,  { ( P `
 x ) ,  ( P `  (
x  +  1 ) ) }  C_  (
I `  ( F `  x ) ) )  <-> if- ( ( Q `  x )  =  ( Q `  ( x  +  1 ) ) ,  ( (iEdg `  S ) `  ( H `  x )
)  =  { ( Q `  x ) } ,  { ( Q `  x ) ,  ( Q `  ( x  +  1
) ) }  C_  ( (iEdg `  S ) `  ( H `  x
) ) ) ) )
144143biimpd 219 . . . . . . 7  |-  ( ( ( ( P `  x )  =  ( Q `  x )  /\  ( P `  ( x  +  1
) )  =  ( Q `  ( x  +  1 ) ) )  /\  ( I `
 ( F `  x ) )  =  ( (iEdg `  S
) `  ( H `  x ) ) )  ->  (if- ( ( P `  x )  =  ( P `  ( x  +  1
) ) ,  ( I `  ( F `
 x ) )  =  { ( P `
 x ) } ,  { ( P `
 x ) ,  ( P `  (
x  +  1 ) ) }  C_  (
I `  ( F `  x ) ) )  -> if- ( ( Q `
 x )  =  ( Q `  (
x  +  1 ) ) ,  ( (iEdg `  S ) `  ( H `  x )
)  =  { ( Q `  x ) } ,  { ( Q `  x ) ,  ( Q `  ( x  +  1
) ) }  C_  ( (iEdg `  S ) `  ( H `  x
) ) ) ) )
145120, 132, 144sylsyld 61 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 0..^ ( # `  H
) ) )  -> 
( A. k  e.  ( 0..^ ( # `  F ) )if- ( ( P `  k
)  =  ( P `
 ( k  +  1 ) ) ,  ( I `  ( F `  k )
)  =  { ( P `  k ) } ,  { ( P `  k ) ,  ( P `  ( k  +  1 ) ) }  C_  ( I `  ( F `  k )
) )  -> if- ( ( Q `  x )  =  ( Q `  ( x  +  1
) ) ,  ( (iEdg `  S ) `  ( H `  x
) )  =  {
( Q `  x
) } ,  {
( Q `  x
) ,  ( Q `
 ( x  + 
1 ) ) } 
C_  ( (iEdg `  S ) `  ( H `  x )
) ) ) )
146145com12 32 . . . . 5  |-  ( A. k  e.  ( 0..^ ( # `  F
) )if- ( ( P `  k )  =  ( P `  ( k  +  1 ) ) ,  ( I `  ( F `
 k ) )  =  { ( P `
 k ) } ,  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  C_  (
I `  ( F `  k ) ) )  ->  ( ( ph  /\  x  e.  ( 0..^ ( # `  H
) ) )  -> if- ( ( Q `  x )  =  ( Q `  ( x  +  1 ) ) ,  ( (iEdg `  S ) `  ( H `  x )
)  =  { ( Q `  x ) } ,  { ( Q `  x ) ,  ( Q `  ( x  +  1
) ) }  C_  ( (iEdg `  S ) `  ( H `  x
) ) ) ) )
1471463ad2ant3 1084 . . . 4  |-  ( ( F  e. Word  dom  I  /\  P : ( 0 ... ( # `  F
) ) --> V  /\  A. k  e.  ( 0..^ ( # `  F
) )if- ( ( P `  k )  =  ( P `  ( k  +  1 ) ) ,  ( I `  ( F `
 k ) )  =  { ( P `
 k ) } ,  { ( P `
 k ) ,  ( P `  (
k  +  1 ) ) }  C_  (
I `  ( F `  k ) ) ) )  ->  ( ( ph  /\  x  e.  ( 0..^ ( # `  H
) ) )  -> if- ( ( Q `  x )  =  ( Q `  ( x  +  1 ) ) ,  ( (iEdg `  S ) `  ( H `  x )
)  =  { ( Q `  x ) } ,  { ( Q `  x ) ,  ( Q `  ( x  +  1
) ) }  C_  ( (iEdg `  S ) `  ( H `  x
) ) ) ) )
14880, 147mpcom 38 . . 3  |-  ( (
ph  /\  x  e.  ( 0..^ ( # `  H
) ) )  -> if- ( ( Q `  x )  =  ( Q `  ( x  +  1 ) ) ,  ( (iEdg `  S ) `  ( H `  x )
)  =  { ( Q `  x ) } ,  { ( Q `  x ) ,  ( Q `  ( x  +  1
) ) }  C_  ( (iEdg `  S ) `  ( H `  x
) ) ) )
149148ralrimiva 2966 . 2  |-  ( ph  ->  A. x  e.  ( 0..^ ( # `  H
) )if- ( ( Q `  x )  =  ( Q `  ( x  +  1
) ) ,  ( (iEdg `  S ) `  ( H `  x
) )  =  {
( Q `  x
) } ,  {
( Q `  x
) ,  ( Q `
 ( x  + 
1 ) ) } 
C_  ( (iEdg `  S ) `  ( H `  x )
) ) )
15057, 3, 2, 7, 60, 39, 1, 72wlkreslem 26566 . . 3  |-  ( ph  ->  ( S  e.  _V  /\  H  e.  _V  /\  Q  e.  _V )
)
151 eqid 2622 . . . 4  |-  (Vtx `  S )  =  (Vtx
`  S )
152 eqid 2622 . . . 4  |-  (iEdg `  S )  =  (iEdg `  S )
153151, 152iswlk 26506 . . 3  |-  ( ( S  e.  _V  /\  H  e.  _V  /\  Q  e.  _V )  ->  ( H (Walks `  S ) Q 
<->  ( H  e. Word  dom  (iEdg `  S )  /\  Q : ( 0 ... ( # `  H
) ) --> (Vtx `  S )  /\  A. x  e.  ( 0..^ ( # `  H
) )if- ( ( Q `  x )  =  ( Q `  ( x  +  1
) ) ,  ( (iEdg `  S ) `  ( H `  x
) )  =  {
( Q `  x
) } ,  {
( Q `  x
) ,  ( Q `
 ( x  + 
1 ) ) } 
C_  ( (iEdg `  S ) `  ( H `  x )
) ) ) ) )
154150, 153syl 17 . 2  |-  ( ph  ->  ( H (Walks `  S ) Q  <->  ( H  e. Word  dom  (iEdg `  S
)  /\  Q :
( 0 ... ( # `
 H ) ) --> (Vtx `  S )  /\  A. x  e.  ( 0..^ ( # `  H
) )if- ( ( Q `  x )  =  ( Q `  ( x  +  1
) ) ,  ( (iEdg `  S ) `  ( H `  x
) )  =  {
( Q `  x
) } ,  {
( Q `  x
) ,  ( Q `
 ( x  + 
1 ) ) } 
C_  ( (iEdg `  S ) `  ( H `  x )
) ) ) ) )
15556, 74, 149, 154mpbir3and 1245 1  |-  ( ph  ->  H (Walks `  S
) Q )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384  if-wif 1012    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200    i^i cin 3573    C_ wss 3574   {csn 4177   {cpr 4179   class class class wbr 4653   dom cdm 5114    |` cres 5116   "cima 5117   Fun wfun 5882    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650   0cc0 9936   1c1 9937    + caddc 9939   ZZ>=cuz 11687   ...cfz 12326  ..^cfzo 12465   #chash 13117  Word cword 13291  Vtxcvtx 25874  iEdgciedg 25875  Walkscwlks 26492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-substr 13303  df-wlks 26495
This theorem is referenced by:  trlres  26597  eupthres  27075
  Copyright terms: Public domain W3C validator