Proof of Theorem wsuclemOLD
Step | Hyp | Ref
| Expression |
1 | | wsuclem.1 |
. . 3
   |
2 | | wsuclem.2 |
. . 3
 Se   |
3 | | predss 5687 |
. . . 4
       |
4 | 3 | a1i 11 |
. . 3
         |
5 | | wsuclem.3 |
. . . . 5
   |
6 | | dfpred3g 5691 |
. . . . 5
              |
7 | 5, 6 | syl 17 |
. . . 4
              |
8 | | elex 3212 |
. . . . . 6
   |
9 | 5, 8 | syl 17 |
. . . . 5
   |
10 | | wsuclem.4 |
. . . . 5
      |
11 | | rabn0 3958 |
. . . . . . 7
            |
12 | | brcnvg 5303 |
. . . . . . . . 9
 
          |
13 | 12 | ancoms 469 |
. . . . . . . 8
 
          |
14 | 13 | rexbidva 3049 |
. . . . . . 7
  
  

     |
15 | 11, 14 | syl5bb 272 |
. . . . . 6
  
   

     |
16 | 15 | biimpar 502 |
. . . . 5
      
      |
17 | 9, 10, 16 | syl2anc 693 |
. . . 4
        |
18 | 7, 17 | eqnetrd 2861 |
. . 3
         |
19 | | tz6.26 5711 |
. . 3
  
Se                 
        
          |
20 | 1, 2, 4, 18, 19 | syl22anc 1327 |
. 2
          
          |
21 | | dfpred3g 5691 |
. . . . 5
              |
22 | 5, 21 | syl 17 |
. . . 4
              |
23 | 22 | rexeqdv 3145 |
. . 3
                
   

                   |
24 | | breq1 4656 |
. . . . 5
           |
25 | 24 | rexrab 3370 |
. . . 4
                  

                  |
26 | | noel 3919 |
. . . . . . . . . . . . 13
 |
27 | | simp2r 1088 |
. . . . . . . . . . . . . 14
 

  
        
                    |
28 | 27 | eleq2d 2687 |
. . . . . . . . . . . . 13
 

  
        
                      |
29 | 26, 28 | mtbiri 317 |
. . . . . . . . . . . 12
 

  
        
      
             |
30 | | vex 3203 |
. . . . . . . . . . . . . 14
 |
31 | 30 | a1i 11 |
. . . . . . . . . . . . 13
 

  
        
      
  |
32 | | simp3 1063 |
. . . . . . . . . . . . 13
 

  
        
               |
33 | | elpredg 5694 |
. . . . . . . . . . . . 13
 
                        |
34 | 31, 32, 33 | syl2anc 693 |
. . . . . . . . . . . 12
 

  
        
                        |
35 | 29, 34 | mtbid 314 |
. . . . . . . . . . 11
 

  
        
           |
36 | | vex 3203 |
. . . . . . . . . . . 12
 |
37 | 30, 36 | brcnv 5305 |
. . . . . . . . . . 11
   
    |
38 | 35, 37 | sylnibr 319 |
. . . . . . . . . 10
 

  
        
            |
39 | 38 | 3expa 1265 |
. . . . . . . . 9
                             |
40 | 39 | ralrimiva 2966 |
. . . . . . . 8
 

  
                     |
41 | 40 | expr 643 |
. . . . . . 7
 
                         |
42 | | simp1rl 1126 |
. . . . . . . . . . . 12
            
  |
43 | | simp1rr 1127 |
. . . . . . . . . . . 12
            
     |
44 | | simp1l 1085 |
. . . . . . . . . . . . . 14
            
  |
45 | 44, 5 | syl 17 |
. . . . . . . . . . . . 13
            
  |
46 | 30 | elpred 5693 |
. . . . . . . . . . . . 13
       

       |
47 | 45, 46 | syl 17 |
. . . . . . . . . . . 12
            
               |
48 | 42, 43, 47 | mpbir2and 957 |
. . . . . . . . . . 11
            
    
   |
49 | | simp3 1063 |
. . . . . . . . . . 11
            
     |
50 | | breq2 4657 |
. . . . . . . . . . . 12
           |
51 | 50 | rspcev 3309 |
. . . . . . . . . . 11
            
           |
52 | 48, 49, 51 | syl2anc 693 |
. . . . . . . . . 10
            
            |
53 | 52 | 3expia 1267 |
. . . . . . . . 9
         
                 |
54 | 53 | ralrimiva 2966 |
. . . . . . . 8
 

                       |
55 | 54 | expr 643 |
. . . . . . 7
 
                        |
56 | 41, 55 | anim12d 586 |
. . . . . 6
 
          
      
 
        
                   |
57 | 56 | ancomsd 470 |
. . . . 5
 
             
             

                   |
58 | 57 | reximdva 3017 |
. . . 4
                   
          
                   |
59 | 25, 58 | syl5bi 232 |
. . 3
                               
                   |
60 | 23, 59 | sylbid 230 |
. 2
                
              
                   |
61 | 20, 60 | mpd 15 |
1
            
                  |