Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wsuclemOLD Structured version   Visualization version   Unicode version

Theorem wsuclemOLD 31774
Description: Obsolete version of wsuclem 31773 as of 10-Oct-2021. (Contributed by Scott Fenton, 15-Jun-2018.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
wsuclem.1  |-  ( ph  ->  R  We  A )
wsuclem.2  |-  ( ph  ->  R Se  A )
wsuclem.3  |-  ( ph  ->  X  e.  V )
wsuclem.4  |-  ( ph  ->  E. w  e.  A  X R w )
Assertion
Ref Expression
wsuclemOLD  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  Pred  ( `' R ,  A ,  X )  -.  x `' R y  /\  A. y  e.  A  (
y `' R x  ->  E. z  e.  Pred  ( `' R ,  A ,  X ) y `' R z ) ) )
Distinct variable groups:    x, A, y, z, w    ph, x, y    x, R, y, z, w    x, X, y, z, w
Allowed substitution hints:    ph( z, w)    V( x, y, z, w)

Proof of Theorem wsuclemOLD
StepHypRef Expression
1 wsuclem.1 . . 3  |-  ( ph  ->  R  We  A )
2 wsuclem.2 . . 3  |-  ( ph  ->  R Se  A )
3 predss 5687 . . . 4  |-  Pred ( `' R ,  A ,  X )  C_  A
43a1i 11 . . 3  |-  ( ph  ->  Pred ( `' R ,  A ,  X ) 
C_  A )
5 wsuclem.3 . . . . 5  |-  ( ph  ->  X  e.  V )
6 dfpred3g 5691 . . . . 5  |-  ( X  e.  V  ->  Pred ( `' R ,  A ,  X )  =  {
w  e.  A  |  w `' R X } )
75, 6syl 17 . . . 4  |-  ( ph  ->  Pred ( `' R ,  A ,  X )  =  { w  e.  A  |  w `' R X } )
8 elex 3212 . . . . . 6  |-  ( X  e.  V  ->  X  e.  _V )
95, 8syl 17 . . . . 5  |-  ( ph  ->  X  e.  _V )
10 wsuclem.4 . . . . 5  |-  ( ph  ->  E. w  e.  A  X R w )
11 rabn0 3958 . . . . . . 7  |-  ( { w  e.  A  |  w `' R X }  =/=  (/)  <->  E. w  e.  A  w `' R X )
12 brcnvg 5303 . . . . . . . . 9  |-  ( ( w  e.  A  /\  X  e.  _V )  ->  ( w `' R X 
<->  X R w ) )
1312ancoms 469 . . . . . . . 8  |-  ( ( X  e.  _V  /\  w  e.  A )  ->  ( w `' R X 
<->  X R w ) )
1413rexbidva 3049 . . . . . . 7  |-  ( X  e.  _V  ->  ( E. w  e.  A  w `' R X  <->  E. w  e.  A  X R w ) )
1511, 14syl5bb 272 . . . . . 6  |-  ( X  e.  _V  ->  ( { w  e.  A  |  w `' R X }  =/=  (/)  <->  E. w  e.  A  X R w ) )
1615biimpar 502 . . . . 5  |-  ( ( X  e.  _V  /\  E. w  e.  A  X R w )  ->  { w  e.  A  |  w `' R X }  =/=  (/) )
179, 10, 16syl2anc 693 . . . 4  |-  ( ph  ->  { w  e.  A  |  w `' R X }  =/=  (/) )
187, 17eqnetrd 2861 . . 3  |-  ( ph  ->  Pred ( `' R ,  A ,  X )  =/=  (/) )
19 tz6.26 5711 . . 3  |-  ( ( ( R  We  A  /\  R Se  A )  /\  ( Pred ( `' R ,  A ,  X )  C_  A  /\  Pred ( `' R ,  A ,  X )  =/=  (/) ) )  ->  E. x  e.  Pred  ( `' R ,  A ,  X ) Pred ( R ,  Pred ( `' R ,  A ,  X ) ,  x
)  =  (/) )
201, 2, 4, 18, 19syl22anc 1327 . 2  |-  ( ph  ->  E. x  e.  Pred  ( `' R ,  A ,  X ) Pred ( R ,  Pred ( `' R ,  A ,  X ) ,  x
)  =  (/) )
21 dfpred3g 5691 . . . . 5  |-  ( X  e.  V  ->  Pred ( `' R ,  A ,  X )  =  {
y  e.  A  | 
y `' R X } )
225, 21syl 17 . . . 4  |-  ( ph  ->  Pred ( `' R ,  A ,  X )  =  { y  e.  A  |  y `' R X } )
2322rexeqdv 3145 . . 3  |-  ( ph  ->  ( E. x  e. 
Pred  ( `' R ,  A ,  X )
Pred ( R ,  Pred ( `' R ,  A ,  X ) ,  x )  =  (/)  <->  E. x  e.  { y  e.  A  |  y `' R X } Pred ( R ,  Pred ( `' R ,  A ,  X ) ,  x
)  =  (/) ) )
24 breq1 4656 . . . . 5  |-  ( y  =  x  ->  (
y `' R X  <-> 
x `' R X ) )
2524rexrab 3370 . . . 4  |-  ( E. x  e.  { y  e.  A  |  y `' R X } Pred ( R ,  Pred ( `' R ,  A ,  X ) ,  x
)  =  (/)  <->  E. x  e.  A  ( x `' R X  /\  Pred ( R ,  Pred ( `' R ,  A ,  X ) ,  x
)  =  (/) ) )
26 noel 3919 . . . . . . . . . . . . 13  |-  -.  y  e.  (/)
27 simp2r 1088 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  A  /\  Pred ( R ,  Pred ( `' R ,  A ,  X ) ,  x
)  =  (/) )  /\  y  e.  Pred ( `' R ,  A ,  X ) )  ->  Pred ( R ,  Pred ( `' R ,  A ,  X ) ,  x
)  =  (/) )
2827eleq2d 2687 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  A  /\  Pred ( R ,  Pred ( `' R ,  A ,  X ) ,  x
)  =  (/) )  /\  y  e.  Pred ( `' R ,  A ,  X ) )  -> 
( y  e.  Pred ( R ,  Pred ( `' R ,  A ,  X ) ,  x
)  <->  y  e.  (/) ) )
2926, 28mtbiri 317 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  A  /\  Pred ( R ,  Pred ( `' R ,  A ,  X ) ,  x
)  =  (/) )  /\  y  e.  Pred ( `' R ,  A ,  X ) )  ->  -.  y  e.  Pred ( R ,  Pred ( `' R ,  A ,  X ) ,  x
) )
30 vex 3203 . . . . . . . . . . . . . 14  |-  x  e. 
_V
3130a1i 11 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  A  /\  Pred ( R ,  Pred ( `' R ,  A ,  X ) ,  x
)  =  (/) )  /\  y  e.  Pred ( `' R ,  A ,  X ) )  ->  x  e.  _V )
32 simp3 1063 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  A  /\  Pred ( R ,  Pred ( `' R ,  A ,  X ) ,  x
)  =  (/) )  /\  y  e.  Pred ( `' R ,  A ,  X ) )  -> 
y  e.  Pred ( `' R ,  A ,  X ) )
33 elpredg 5694 . . . . . . . . . . . . 13  |-  ( ( x  e.  _V  /\  y  e.  Pred ( `' R ,  A ,  X ) )  -> 
( y  e.  Pred ( R ,  Pred ( `' R ,  A ,  X ) ,  x
)  <->  y R x ) )
3431, 32, 33syl2anc 693 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  A  /\  Pred ( R ,  Pred ( `' R ,  A ,  X ) ,  x
)  =  (/) )  /\  y  e.  Pred ( `' R ,  A ,  X ) )  -> 
( y  e.  Pred ( R ,  Pred ( `' R ,  A ,  X ) ,  x
)  <->  y R x ) )
3529, 34mtbid 314 . . . . . . . . . . 11  |-  ( (
ph  /\  ( x  e.  A  /\  Pred ( R ,  Pred ( `' R ,  A ,  X ) ,  x
)  =  (/) )  /\  y  e.  Pred ( `' R ,  A ,  X ) )  ->  -.  y R x )
36 vex 3203 . . . . . . . . . . . 12  |-  y  e. 
_V
3730, 36brcnv 5305 . . . . . . . . . . 11  |-  ( x `' R y  <->  y R x )
3835, 37sylnibr 319 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  A  /\  Pred ( R ,  Pred ( `' R ,  A ,  X ) ,  x
)  =  (/) )  /\  y  e.  Pred ( `' R ,  A ,  X ) )  ->  -.  x `' R y )
39383expa 1265 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  A  /\  Pred ( R ,  Pred ( `' R ,  A ,  X ) ,  x
)  =  (/) ) )  /\  y  e.  Pred ( `' R ,  A ,  X ) )  ->  -.  x `' R y )
4039ralrimiva 2966 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  A  /\  Pred ( R ,  Pred ( `' R ,  A ,  X ) ,  x
)  =  (/) ) )  ->  A. y  e.  Pred  ( `' R ,  A ,  X )  -.  x `' R y )
4140expr 643 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  ( Pred ( R ,  Pred ( `' R ,  A ,  X ) ,  x
)  =  (/)  ->  A. y  e.  Pred  ( `' R ,  A ,  X )  -.  x `' R
y ) )
42 simp1rl 1126 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  A  /\  x `' R X ) )  /\  y  e.  A  /\  y `' R x )  ->  x  e.  A )
43 simp1rr 1127 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  A  /\  x `' R X ) )  /\  y  e.  A  /\  y `' R x )  ->  x `' R X )
44 simp1l 1085 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  A  /\  x `' R X ) )  /\  y  e.  A  /\  y `' R x )  ->  ph )
4544, 5syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  A  /\  x `' R X ) )  /\  y  e.  A  /\  y `' R x )  ->  X  e.  V )
4630elpred 5693 . . . . . . . . . . . . 13  |-  ( X  e.  V  ->  (
x  e.  Pred ( `' R ,  A ,  X )  <->  ( x  e.  A  /\  x `' R X ) ) )
4745, 46syl 17 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  A  /\  x `' R X ) )  /\  y  e.  A  /\  y `' R x )  ->  ( x  e.  Pred ( `' R ,  A ,  X )  <-> 
( x  e.  A  /\  x `' R X ) ) )
4842, 43, 47mpbir2and 957 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  A  /\  x `' R X ) )  /\  y  e.  A  /\  y `' R x )  ->  x  e.  Pred ( `' R ,  A ,  X )
)
49 simp3 1063 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  A  /\  x `' R X ) )  /\  y  e.  A  /\  y `' R x )  ->  y `' R x )
50 breq2 4657 . . . . . . . . . . . 12  |-  ( z  =  x  ->  (
y `' R z  <-> 
y `' R x ) )
5150rspcev 3309 . . . . . . . . . . 11  |-  ( ( x  e.  Pred ( `' R ,  A ,  X )  /\  y `' R x )  ->  E. z  e.  Pred  ( `' R ,  A ,  X ) y `' R z )
5248, 49, 51syl2anc 693 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  A  /\  x `' R X ) )  /\  y  e.  A  /\  y `' R x )  ->  E. z  e.  Pred  ( `' R ,  A ,  X ) y `' R z )
53523expia 1267 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  A  /\  x `' R X ) )  /\  y  e.  A
)  ->  ( y `' R x  ->  E. z  e.  Pred  ( `' R ,  A ,  X ) y `' R z ) )
5453ralrimiva 2966 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  A  /\  x `' R X ) )  ->  A. y  e.  A  ( y `' R x  ->  E. z  e.  Pred  ( `' R ,  A ,  X ) y `' R z ) )
5554expr 643 . . . . . . 7  |-  ( (
ph  /\  x  e.  A )  ->  (
x `' R X  ->  A. y  e.  A  ( y `' R x  ->  E. z  e.  Pred  ( `' R ,  A ,  X ) y `' R z ) ) )
5641, 55anim12d 586 . . . . . 6  |-  ( (
ph  /\  x  e.  A )  ->  (
( Pred ( R ,  Pred ( `' R ,  A ,  X ) ,  x )  =  (/)  /\  x `' R X )  ->  ( A. y  e.  Pred  ( `' R ,  A ,  X )  -.  x `' R y  /\  A. y  e.  A  (
y `' R x  ->  E. z  e.  Pred  ( `' R ,  A ,  X ) y `' R z ) ) ) )
5756ancomsd 470 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  (
( x `' R X  /\  Pred ( R ,  Pred ( `' R ,  A ,  X ) ,  x )  =  (/) )  ->  ( A. y  e.  Pred  ( `' R ,  A ,  X )  -.  x `' R
y  /\  A. y  e.  A  ( y `' R x  ->  E. z  e.  Pred  ( `' R ,  A ,  X ) y `' R z ) ) ) )
5857reximdva 3017 . . . 4  |-  ( ph  ->  ( E. x  e.  A  ( x `' R X  /\  Pred ( R ,  Pred ( `' R ,  A ,  X ) ,  x
)  =  (/) )  ->  E. x  e.  A  ( A. y  e.  Pred  ( `' R ,  A ,  X )  -.  x `' R y  /\  A. y  e.  A  (
y `' R x  ->  E. z  e.  Pred  ( `' R ,  A ,  X ) y `' R z ) ) ) )
5925, 58syl5bi 232 . . 3  |-  ( ph  ->  ( E. x  e. 
{ y  e.  A  |  y `' R X } Pred ( R ,  Pred ( `' R ,  A ,  X ) ,  x )  =  (/)  ->  E. x  e.  A  ( A. y  e.  Pred  ( `' R ,  A ,  X )  -.  x `' R y  /\  A. y  e.  A  (
y `' R x  ->  E. z  e.  Pred  ( `' R ,  A ,  X ) y `' R z ) ) ) )
6023, 59sylbid 230 . 2  |-  ( ph  ->  ( E. x  e. 
Pred  ( `' R ,  A ,  X )
Pred ( R ,  Pred ( `' R ,  A ,  X ) ,  x )  =  (/)  ->  E. x  e.  A  ( A. y  e.  Pred  ( `' R ,  A ,  X )  -.  x `' R y  /\  A. y  e.  A  (
y `' R x  ->  E. z  e.  Pred  ( `' R ,  A ,  X ) y `' R z ) ) ) )
6120, 60mpd 15 1  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  Pred  ( `' R ,  A ,  X )  -.  x `' R y  /\  A. y  e.  A  (
y `' R x  ->  E. z  e.  Pred  ( `' R ,  A ,  X ) y `' R z ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    C_ wss 3574   (/)c0 3915   class class class wbr 4653   Se wse 5071    We wwe 5072   `'ccnv 5113   Predcpred 5679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator