Proof of Theorem wsuclemOLD
| Step | Hyp | Ref
| Expression |
| 1 | | wsuclem.1 |
. . 3
   |
| 2 | | wsuclem.2 |
. . 3
 Se   |
| 3 | | predss 5687 |
. . . 4
       |
| 4 | 3 | a1i 11 |
. . 3
         |
| 5 | | wsuclem.3 |
. . . . 5
   |
| 6 | | dfpred3g 5691 |
. . . . 5
              |
| 7 | 5, 6 | syl 17 |
. . . 4
              |
| 8 | | elex 3212 |
. . . . . 6
   |
| 9 | 5, 8 | syl 17 |
. . . . 5
   |
| 10 | | wsuclem.4 |
. . . . 5
      |
| 11 | | rabn0 3958 |
. . . . . . 7
            |
| 12 | | brcnvg 5303 |
. . . . . . . . 9
 
          |
| 13 | 12 | ancoms 469 |
. . . . . . . 8
 
          |
| 14 | 13 | rexbidva 3049 |
. . . . . . 7
  
  

     |
| 15 | 11, 14 | syl5bb 272 |
. . . . . 6
  
   

     |
| 16 | 15 | biimpar 502 |
. . . . 5
      
      |
| 17 | 9, 10, 16 | syl2anc 693 |
. . . 4
        |
| 18 | 7, 17 | eqnetrd 2861 |
. . 3
         |
| 19 | | tz6.26 5711 |
. . 3
  
Se                 
        
          |
| 20 | 1, 2, 4, 18, 19 | syl22anc 1327 |
. 2
          
          |
| 21 | | dfpred3g 5691 |
. . . . 5
              |
| 22 | 5, 21 | syl 17 |
. . . 4
              |
| 23 | 22 | rexeqdv 3145 |
. . 3
                
   

                   |
| 24 | | breq1 4656 |
. . . . 5
           |
| 25 | 24 | rexrab 3370 |
. . . 4
                  

                  |
| 26 | | noel 3919 |
. . . . . . . . . . . . 13
 |
| 27 | | simp2r 1088 |
. . . . . . . . . . . . . 14
 

  
        
                    |
| 28 | 27 | eleq2d 2687 |
. . . . . . . . . . . . 13
 

  
        
                      |
| 29 | 26, 28 | mtbiri 317 |
. . . . . . . . . . . 12
 

  
        
      
             |
| 30 | | vex 3203 |
. . . . . . . . . . . . . 14
 |
| 31 | 30 | a1i 11 |
. . . . . . . . . . . . 13
 

  
        
      
  |
| 32 | | simp3 1063 |
. . . . . . . . . . . . 13
 

  
        
               |
| 33 | | elpredg 5694 |
. . . . . . . . . . . . 13
 
                        |
| 34 | 31, 32, 33 | syl2anc 693 |
. . . . . . . . . . . 12
 

  
        
                        |
| 35 | 29, 34 | mtbid 314 |
. . . . . . . . . . 11
 

  
        
           |
| 36 | | vex 3203 |
. . . . . . . . . . . 12
 |
| 37 | 30, 36 | brcnv 5305 |
. . . . . . . . . . 11
   
    |
| 38 | 35, 37 | sylnibr 319 |
. . . . . . . . . 10
 

  
        
            |
| 39 | 38 | 3expa 1265 |
. . . . . . . . 9
                             |
| 40 | 39 | ralrimiva 2966 |
. . . . . . . 8
 

  
                     |
| 41 | 40 | expr 643 |
. . . . . . 7
 
                         |
| 42 | | simp1rl 1126 |
. . . . . . . . . . . 12
            
  |
| 43 | | simp1rr 1127 |
. . . . . . . . . . . 12
            
     |
| 44 | | simp1l 1085 |
. . . . . . . . . . . . . 14
            
  |
| 45 | 44, 5 | syl 17 |
. . . . . . . . . . . . 13
            
  |
| 46 | 30 | elpred 5693 |
. . . . . . . . . . . . 13
       

       |
| 47 | 45, 46 | syl 17 |
. . . . . . . . . . . 12
            
               |
| 48 | 42, 43, 47 | mpbir2and 957 |
. . . . . . . . . . 11
            
    
   |
| 49 | | simp3 1063 |
. . . . . . . . . . 11
            
     |
| 50 | | breq2 4657 |
. . . . . . . . . . . 12
           |
| 51 | 50 | rspcev 3309 |
. . . . . . . . . . 11
            
           |
| 52 | 48, 49, 51 | syl2anc 693 |
. . . . . . . . . 10
            
            |
| 53 | 52 | 3expia 1267 |
. . . . . . . . 9
         
                 |
| 54 | 53 | ralrimiva 2966 |
. . . . . . . 8
 

                       |
| 55 | 54 | expr 643 |
. . . . . . 7
 
                        |
| 56 | 41, 55 | anim12d 586 |
. . . . . 6
 
          
      
 
        
                   |
| 57 | 56 | ancomsd 470 |
. . . . 5
 
             
             

                   |
| 58 | 57 | reximdva 3017 |
. . . 4
                   
          
                   |
| 59 | 25, 58 | syl5bi 232 |
. . 3
                               
                   |
| 60 | 23, 59 | sylbid 230 |
. 2
                
              
                   |
| 61 | 20, 60 | mpd 15 |
1
            
                  |