![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simp1rl | Structured version Visualization version Unicode version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simp1rl |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 794 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | 3ad2ant1 1082 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 |
This theorem is referenced by: f1imass 6521 smo11 7461 zsupss 11777 lsmcv 19141 lspsolvlem 19142 mat2pmatghm 20535 mat2pmatmul 20536 plyadd 23973 plymul 23974 coeeu 23981 aannenlem1 24083 logexprlim 24950 ax5seglem6 25814 ax5seg 25818 mdetpmtr1 29889 mdetpmtr2 29890 wsuclem 31773 wsuclemOLD 31774 btwnconn1lem2 32195 btwnconn1lem3 32196 btwnconn1lem4 32197 btwnconn1lem12 32205 lshpsmreu 34396 2llnmat 34810 lvolex3N 34824 lnjatN 35066 pclfinclN 35236 lhpat3 35332 cdlemd6 35490 cdlemfnid 35852 cdlemk19ylem 36218 dihlsscpre 36523 dih1dimb2 36530 dihglblem6 36629 pellex 37399 mullimc 39848 mullimcf 39855 limcperiod 39860 cncfshift 40087 cncfperiod 40092 |
Copyright terms: Public domain | W3C validator |