| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wsuclem | Structured version Visualization version Unicode version | ||
| Description: Lemma for the supremum properties of well-founded successor. (Contributed by Scott Fenton, 15-Jun-2018.) (Revised by AV, 10-Oct-2021.) |
| Ref | Expression |
|---|---|
| wsuclem.1 |
|
| wsuclem.2 |
|
| wsuclem.3 |
|
| wsuclem.4 |
|
| Ref | Expression |
|---|---|
| wsuclem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wsuclem.1 |
. . 3
| |
| 2 | wsuclem.2 |
. . 3
| |
| 3 | predss 5687 |
. . . 4
| |
| 4 | 3 | a1i 11 |
. . 3
|
| 5 | wsuclem.3 |
. . . . 5
| |
| 6 | dfpred3g 5691 |
. . . . 5
| |
| 7 | 5, 6 | syl 17 |
. . . 4
|
| 8 | 5 | elexd 3214 |
. . . . 5
|
| 9 | wsuclem.4 |
. . . . 5
| |
| 10 | rabn0 3958 |
. . . . . . 7
| |
| 11 | brcnvg 5303 |
. . . . . . . . 9
| |
| 12 | 11 | ancoms 469 |
. . . . . . . 8
|
| 13 | 12 | rexbidva 3049 |
. . . . . . 7
|
| 14 | 10, 13 | syl5bb 272 |
. . . . . 6
|
| 15 | 14 | biimpar 502 |
. . . . 5
|
| 16 | 8, 9, 15 | syl2anc 693 |
. . . 4
|
| 17 | 7, 16 | eqnetrd 2861 |
. . 3
|
| 18 | tz6.26 5711 |
. . 3
| |
| 19 | 1, 2, 4, 17, 18 | syl22anc 1327 |
. 2
|
| 20 | dfpred3g 5691 |
. . . . 5
| |
| 21 | 5, 20 | syl 17 |
. . . 4
|
| 22 | 21 | rexeqdv 3145 |
. . 3
|
| 23 | breq1 4656 |
. . . . 5
| |
| 24 | 23 | rexrab 3370 |
. . . 4
|
| 25 | noel 3919 |
. . . . . . . . . . . 12
| |
| 26 | simp2r 1088 |
. . . . . . . . . . . . 13
| |
| 27 | 26 | eleq2d 2687 |
. . . . . . . . . . . 12
|
| 28 | 25, 27 | mtbiri 317 |
. . . . . . . . . . 11
|
| 29 | vex 3203 |
. . . . . . . . . . . . 13
| |
| 30 | 29 | a1i 11 |
. . . . . . . . . . . 12
|
| 31 | simp3 1063 |
. . . . . . . . . . . 12
| |
| 32 | elpredg 5694 |
. . . . . . . . . . . 12
| |
| 33 | 30, 31, 32 | syl2anc 693 |
. . . . . . . . . . 11
|
| 34 | 28, 33 | mtbid 314 |
. . . . . . . . . 10
|
| 35 | 34 | 3expa 1265 |
. . . . . . . . 9
|
| 36 | 35 | ralrimiva 2966 |
. . . . . . . 8
|
| 37 | 36 | expr 643 |
. . . . . . 7
|
| 38 | simp1rl 1126 |
. . . . . . . . . . . 12
| |
| 39 | simp1rr 1127 |
. . . . . . . . . . . 12
| |
| 40 | 5 | adantr 481 |
. . . . . . . . . . . . . 14
|
| 41 | 40 | 3ad2ant1 1082 |
. . . . . . . . . . . . 13
|
| 42 | 29 | elpred 5693 |
. . . . . . . . . . . . 13
|
| 43 | 41, 42 | syl 17 |
. . . . . . . . . . . 12
|
| 44 | 38, 39, 43 | mpbir2and 957 |
. . . . . . . . . . 11
|
| 45 | simp3 1063 |
. . . . . . . . . . 11
| |
| 46 | breq1 4656 |
. . . . . . . . . . . 12
| |
| 47 | 46 | rspcev 3309 |
. . . . . . . . . . 11
|
| 48 | 44, 45, 47 | syl2anc 693 |
. . . . . . . . . 10
|
| 49 | 48 | 3expia 1267 |
. . . . . . . . 9
|
| 50 | 49 | ralrimiva 2966 |
. . . . . . . 8
|
| 51 | 50 | expr 643 |
. . . . . . 7
|
| 52 | 37, 51 | anim12d 586 |
. . . . . 6
|
| 53 | 52 | ancomsd 470 |
. . . . 5
|
| 54 | 53 | reximdva 3017 |
. . . 4
|
| 55 | 24, 54 | syl5bi 232 |
. . 3
|
| 56 | 22, 55 | sylbid 230 |
. 2
|
| 57 | 19, 56 | mpd 15 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-cnv 5122 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 |
| This theorem is referenced by: wsuccl 31776 wsuclb 31777 |
| Copyright terms: Public domain | W3C validator |