| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wzel | Structured version Visualization version Unicode version | ||
| Description: The zero of a well-founded set is a member of that set. (Contributed by Scott Fenton, 13-Jun-2018.) (Revised by AV, 10-Oct-2021.) |
| Ref | Expression |
|---|---|
| wzel |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | weso 5105 |
. . 3
| |
| 2 | 1 | 3ad2ant1 1082 |
. 2
|
| 3 | simp1 1061 |
. . . 4
| |
| 4 | simp2 1062 |
. . . 4
| |
| 5 | ssid 3624 |
. . . . 5
| |
| 6 | 5 | a1i 11 |
. . . 4
|
| 7 | simp3 1063 |
. . . 4
| |
| 8 | tz6.26 5711 |
. . . 4
| |
| 9 | 3, 4, 6, 7, 8 | syl22anc 1327 |
. . 3
|
| 10 | vex 3203 |
. . . . . . . . . . . 12
| |
| 11 | vex 3203 |
. . . . . . . . . . . . 13
| |
| 12 | 11 | elpred 5693 |
. . . . . . . . . . . 12
|
| 13 | 10, 12 | ax-mp 5 |
. . . . . . . . . . 11
|
| 14 | 13 | notbii 310 |
. . . . . . . . . 10
|
| 15 | imnan 438 |
. . . . . . . . . 10
| |
| 16 | 14, 15 | bitr4i 267 |
. . . . . . . . 9
|
| 17 | pm2.27 42 |
. . . . . . . . . . 11
| |
| 18 | 17 | ad2antll 765 |
. . . . . . . . . 10
|
| 19 | breq1 4656 |
. . . . . . . . . . . . 13
| |
| 20 | 19 | rspcev 3309 |
. . . . . . . . . . . 12
|
| 21 | 20 | ex 450 |
. . . . . . . . . . 11
|
| 22 | 21 | ad2antrl 764 |
. . . . . . . . . 10
|
| 23 | 18, 22 | jctird 567 |
. . . . . . . . 9
|
| 24 | 16, 23 | syl5bi 232 |
. . . . . . . 8
|
| 25 | 24 | expr 643 |
. . . . . . 7
|
| 26 | 25 | com23 86 |
. . . . . 6
|
| 27 | 26 | alimdv 1845 |
. . . . 5
|
| 28 | eq0 3929 |
. . . . 5
| |
| 29 | r19.26 3064 |
. . . . . 6
| |
| 30 | df-ral 2917 |
. . . . . 6
| |
| 31 | 29, 30 | bitr3i 266 |
. . . . 5
|
| 32 | 27, 28, 31 | 3imtr4g 285 |
. . . 4
|
| 33 | 32 | reximdva 3017 |
. . 3
|
| 34 | 9, 33 | mpd 15 |
. 2
|
| 35 | 2, 34 | infcl 8394 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-cnv 5122 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-iota 5851 df-riota 6611 df-sup 8348 df-inf 8349 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |