MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infcl Structured version   Visualization version   Unicode version

Theorem infcl 8394
Description: An infimum belongs to its base class (closure law). See also inflb 8395 and infglb 8396. (Contributed by AV, 3-Sep-2020.)
Hypotheses
Ref Expression
infcl.1  |-  ( ph  ->  R  Or  A )
infcl.2  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R y ) ) )
Assertion
Ref Expression
infcl  |-  ( ph  -> inf ( B ,  A ,  R )  e.  A
)
Distinct variable groups:    x, A, y, z    x, B, y, z    x, R, y, z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem infcl
StepHypRef Expression
1 df-inf 8349 . 2  |- inf ( B ,  A ,  R
)  =  sup ( B ,  A ,  `' R )
2 infcl.1 . . . 4  |-  ( ph  ->  R  Or  A )
3 cnvso 5674 . . . 4  |-  ( R  Or  A  <->  `' R  Or  A )
42, 3sylib 208 . . 3  |-  ( ph  ->  `' R  Or  A
)
5 infcl.2 . . . 4  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  y R x  /\  A. y  e.  A  ( x R y  ->  E. z  e.  B  z R y ) ) )
62, 5infcllem 8393 . . 3  |-  ( ph  ->  E. x  e.  A  ( A. y  e.  B  -.  x `' R y  /\  A. y  e.  A  ( y `' R x  ->  E. z  e.  B  y `' R z ) ) )
74, 6supcl 8364 . 2  |-  ( ph  ->  sup ( B ,  A ,  `' R
)  e.  A )
81, 7syl5eqel 2705 1  |-  ( ph  -> inf ( B ,  A ,  R )  e.  A
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    e. wcel 1990   A.wral 2912   E.wrex 2913   class class class wbr 4653    Or wor 5034   `'ccnv 5113   supcsup 8346  infcinf 8347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-po 5035  df-so 5036  df-cnv 5122  df-iota 5851  df-riota 6611  df-sup 8348  df-inf 8349
This theorem is referenced by:  infrecl  11005  infxrcl  12163  infssd  29488  xrge0infssd  29526  infxrge0lb  29529  infxrge0gelb  29531  omsf  30358  wzel  31771  wsuccl  31776
  Copyright terms: Public domain W3C validator