MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xkopt Structured version   Visualization version   Unicode version

Theorem xkopt 21458
Description: The compact-open topology on a discrete set coincides with the product topology where all the factors are the same. (Contributed by Mario Carneiro, 19-Mar-2015.) (Revised by Mario Carneiro, 12-Sep-2015.)
Assertion
Ref Expression
xkopt  |-  ( ( R  e.  Top  /\  A  e.  V )  ->  ( R  ^ko  ~P A )  =  ( Xt_ `  ( A  X.  { R }
) ) )

Proof of Theorem xkopt
Dummy variables  f 
k  v  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 distop 20799 . . . . 5  |-  ( A  e.  V  ->  ~P A  e.  Top )
21adantl 482 . . . 4  |-  ( ( R  e.  Top  /\  A  e.  V )  ->  ~P A  e.  Top )
3 simpl 473 . . . 4  |-  ( ( R  e.  Top  /\  A  e.  V )  ->  R  e.  Top )
4 unipw 4918 . . . . . 6  |-  U. ~P A  =  A
54eqcomi 2631 . . . . 5  |-  A  = 
U. ~P A
6 eqid 2622 . . . . 5  |-  { x  e.  ~P A  |  ( ~P At  x )  e.  Comp }  =  { x  e. 
~P A  |  ( ~P At  x )  e.  Comp }
7 eqid 2622 . . . . 5  |-  ( k  e.  { x  e. 
~P A  |  ( ~P At  x )  e.  Comp } ,  v  e.  R  |->  { f  e.  ( ~P A  Cn  R
)  |  ( f
" k )  C_  v } )  =  ( k  e.  { x  e.  ~P A  |  ( ~P At  x )  e.  Comp } ,  v  e.  R  |->  { f  e.  ( ~P A  Cn  R
)  |  ( f
" k )  C_  v } )
85, 6, 7xkoval 21390 . . . 4  |-  ( ( ~P A  e.  Top  /\  R  e.  Top )  ->  ( R  ^ko  ~P A )  =  ( topGen `  ( fi ` 
ran  ( k  e. 
{ x  e.  ~P A  |  ( ~P At  x )  e.  Comp } ,  v  e.  R  |->  { f  e.  ( ~P A  Cn  R
)  |  ( f
" k )  C_  v } ) ) ) )
92, 3, 8syl2anc 693 . . 3  |-  ( ( R  e.  Top  /\  A  e.  V )  ->  ( R  ^ko  ~P A )  =  ( topGen `  ( fi ` 
ran  ( k  e. 
{ x  e.  ~P A  |  ( ~P At  x )  e.  Comp } ,  v  e.  R  |->  { f  e.  ( ~P A  Cn  R
)  |  ( f
" k )  C_  v } ) ) ) )
10 simpr 477 . . . . 5  |-  ( ( R  e.  Top  /\  A  e.  V )  ->  A  e.  V )
11 fconst6g 6094 . . . . . 6  |-  ( R  e.  Top  ->  ( A  X.  { R }
) : A --> Top )
1211adantr 481 . . . . 5  |-  ( ( R  e.  Top  /\  A  e.  V )  ->  ( A  X.  { R } ) : A --> Top )
13 pttop 21385 . . . . 5  |-  ( ( A  e.  V  /\  ( A  X.  { R } ) : A --> Top )  ->  ( Xt_ `  ( A  X.  { R } ) )  e. 
Top )
1410, 12, 13syl2anc 693 . . . 4  |-  ( ( R  e.  Top  /\  A  e.  V )  ->  ( Xt_ `  ( A  X.  { R }
) )  e.  Top )
15 elpwi 4168 . . . . . . . . . . . . . 14  |-  ( x  e.  ~P A  ->  x  C_  A )
16 restdis 20982 . . . . . . . . . . . . . 14  |-  ( ( A  e.  V  /\  x  C_  A )  -> 
( ~P At  x )  =  ~P x )
1715, 16sylan2 491 . . . . . . . . . . . . 13  |-  ( ( A  e.  V  /\  x  e.  ~P A
)  ->  ( ~P At  x )  =  ~P x )
1817adantll 750 . . . . . . . . . . . 12  |-  ( ( ( R  e.  Top  /\  A  e.  V )  /\  x  e.  ~P A )  ->  ( ~P At  x )  =  ~P x )
1918eleq1d 2686 . . . . . . . . . . 11  |-  ( ( ( R  e.  Top  /\  A  e.  V )  /\  x  e.  ~P A )  ->  (
( ~P At  x )  e.  Comp  <->  ~P x  e.  Comp ) )
20 discmp 21201 . . . . . . . . . . 11  |-  ( x  e.  Fin  <->  ~P x  e.  Comp )
2119, 20syl6bbr 278 . . . . . . . . . 10  |-  ( ( ( R  e.  Top  /\  A  e.  V )  /\  x  e.  ~P A )  ->  (
( ~P At  x )  e.  Comp  <->  x  e.  Fin ) )
2221rabbidva 3188 . . . . . . . . 9  |-  ( ( R  e.  Top  /\  A  e.  V )  ->  { x  e.  ~P A  |  ( ~P At  x )  e.  Comp }  =  { x  e. 
~P A  |  x  e.  Fin } )
23 dfin5 3582 . . . . . . . . 9  |-  ( ~P A  i^i  Fin )  =  { x  e.  ~P A  |  x  e.  Fin }
2422, 23syl6eqr 2674 . . . . . . . 8  |-  ( ( R  e.  Top  /\  A  e.  V )  ->  { x  e.  ~P A  |  ( ~P At  x )  e.  Comp }  =  ( ~P A  i^i  Fin ) )
25 eqidd 2623 . . . . . . . 8  |-  ( ( R  e.  Top  /\  A  e.  V )  ->  R  =  R )
26 eqid 2622 . . . . . . . . . . 11  |-  U. R  =  U. R
2726toptopon 20722 . . . . . . . . . 10  |-  ( R  e.  Top  <->  R  e.  (TopOn `  U. R ) )
28 cndis 21095 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  R  e.  (TopOn `  U. R ) )  -> 
( ~P A  Cn  R )  =  ( U. R  ^m  A
) )
2928ancoms 469 . . . . . . . . . 10  |-  ( ( R  e.  (TopOn `  U. R )  /\  A  e.  V )  ->  ( ~P A  Cn  R
)  =  ( U. R  ^m  A ) )
3027, 29sylanb 489 . . . . . . . . 9  |-  ( ( R  e.  Top  /\  A  e.  V )  ->  ( ~P A  Cn  R )  =  ( U. R  ^m  A
) )
31 rabeq 3192 . . . . . . . . 9  |-  ( ( ~P A  Cn  R
)  =  ( U. R  ^m  A )  ->  { f  e.  ( ~P A  Cn  R
)  |  ( f
" k )  C_  v }  =  {
f  e.  ( U. R  ^m  A )  |  ( f " k
)  C_  v }
)
3230, 31syl 17 . . . . . . . 8  |-  ( ( R  e.  Top  /\  A  e.  V )  ->  { f  e.  ( ~P A  Cn  R
)  |  ( f
" k )  C_  v }  =  {
f  e.  ( U. R  ^m  A )  |  ( f " k
)  C_  v }
)
3324, 25, 32mpt2eq123dv 6717 . . . . . . 7  |-  ( ( R  e.  Top  /\  A  e.  V )  ->  ( k  e.  {
x  e.  ~P A  |  ( ~P At  x
)  e.  Comp } , 
v  e.  R  |->  { f  e.  ( ~P A  Cn  R )  |  ( f "
k )  C_  v } )  =  ( k  e.  ( ~P A  i^i  Fin ) ,  v  e.  R  |->  { f  e.  ( U. R  ^m  A
)  |  ( f
" k )  C_  v } ) )
3433rneqd 5353 . . . . . 6  |-  ( ( R  e.  Top  /\  A  e.  V )  ->  ran  ( k  e. 
{ x  e.  ~P A  |  ( ~P At  x )  e.  Comp } ,  v  e.  R  |->  { f  e.  ( ~P A  Cn  R
)  |  ( f
" k )  C_  v } )  =  ran  ( k  e.  ( ~P A  i^i  Fin ) ,  v  e.  R  |->  { f  e.  ( U. R  ^m  A )  |  ( f " k ) 
C_  v } ) )
35 eqid 2622 . . . . . . 7  |-  ( k  e.  ( ~P A  i^i  Fin ) ,  v  e.  R  |->  { f  e.  ( U. R  ^m  A )  |  ( f " k ) 
C_  v } )  =  ( k  e.  ( ~P A  i^i  Fin ) ,  v  e.  R  |->  { f  e.  ( U. R  ^m  A )  |  ( f " k ) 
C_  v } )
3635rnmpt2 6770 . . . . . 6  |-  ran  (
k  e.  ( ~P A  i^i  Fin ) ,  v  e.  R  |->  { f  e.  ( U. R  ^m  A
)  |  ( f
" k )  C_  v } )  =  {
x  |  E. k  e.  ( ~P A  i^i  Fin ) E. v  e.  R  x  =  {
f  e.  ( U. R  ^m  A )  |  ( f " k
)  C_  v } }
3734, 36syl6eq 2672 . . . . 5  |-  ( ( R  e.  Top  /\  A  e.  V )  ->  ran  ( k  e. 
{ x  e.  ~P A  |  ( ~P At  x )  e.  Comp } ,  v  e.  R  |->  { f  e.  ( ~P A  Cn  R
)  |  ( f
" k )  C_  v } )  =  {
x  |  E. k  e.  ( ~P A  i^i  Fin ) E. v  e.  R  x  =  {
f  e.  ( U. R  ^m  A )  |  ( f " k
)  C_  v } } )
38 elmapi 7879 . . . . . . . . . . . 12  |-  ( f  e.  ( U. R  ^m  A )  ->  f : A --> U. R )
39 eleq2 2690 . . . . . . . . . . . . . . . . 17  |-  ( v  =  if ( x  e.  k ,  v ,  U. R )  ->  ( ( f `
 x )  e.  v  <->  ( f `  x )  e.  if ( x  e.  k ,  v ,  U. R ) ) )
4039imbi2d 330 . . . . . . . . . . . . . . . 16  |-  ( v  =  if ( x  e.  k ,  v ,  U. R )  ->  ( ( x  e.  A  ->  (
f `  x )  e.  v )  <->  ( x  e.  A  ->  ( f `
 x )  e.  if ( x  e.  k ,  v , 
U. R ) ) ) )
4140bibi1d 333 . . . . . . . . . . . . . . 15  |-  ( v  =  if ( x  e.  k ,  v ,  U. R )  ->  ( ( ( x  e.  A  -> 
( f `  x
)  e.  v )  <-> 
( x  e.  k  ->  ( f `  x )  e.  v ) )  <->  ( (
x  e.  A  -> 
( f `  x
)  e.  if ( x  e.  k ,  v ,  U. R
) )  <->  ( x  e.  k  ->  ( f `
 x )  e.  v ) ) ) )
42 eleq2 2690 . . . . . . . . . . . . . . . . 17  |-  ( U. R  =  if (
x  e.  k ,  v ,  U. R
)  ->  ( (
f `  x )  e.  U. R  <->  ( f `  x )  e.  if ( x  e.  k ,  v ,  U. R ) ) )
4342imbi2d 330 . . . . . . . . . . . . . . . 16  |-  ( U. R  =  if (
x  e.  k ,  v ,  U. R
)  ->  ( (
x  e.  A  -> 
( f `  x
)  e.  U. R
)  <->  ( x  e.  A  ->  ( f `  x )  e.  if ( x  e.  k ,  v ,  U. R ) ) ) )
4443bibi1d 333 . . . . . . . . . . . . . . 15  |-  ( U. R  =  if (
x  e.  k ,  v ,  U. R
)  ->  ( (
( x  e.  A  ->  ( f `  x
)  e.  U. R
)  <->  ( x  e.  k  ->  ( f `  x )  e.  v ) )  <->  ( (
x  e.  A  -> 
( f `  x
)  e.  if ( x  e.  k ,  v ,  U. R
) )  <->  ( x  e.  k  ->  ( f `
 x )  e.  v ) ) ) )
45 inss1 3833 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ~P A  i^i  Fin )  C_ 
~P A
46 simprl 794 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( R  e.  Top  /\  A  e.  V )  /\  ( k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R ) )  -> 
k  e.  ( ~P A  i^i  Fin )
)
4745, 46sseldi 3601 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( R  e.  Top  /\  A  e.  V )  /\  ( k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R ) )  -> 
k  e.  ~P A
)
4847elpwid 4170 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( R  e.  Top  /\  A  e.  V )  /\  ( k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R ) )  -> 
k  C_  A )
4948adantr 481 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( R  e. 
Top  /\  A  e.  V )  /\  (
k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R
) )  /\  f : A --> U. R )  -> 
k  C_  A )
5049sselda 3603 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( R  e.  Top  /\  A  e.  V )  /\  (
k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R
) )  /\  f : A --> U. R )  /\  x  e.  k )  ->  x  e.  A )
51 simpr 477 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( R  e.  Top  /\  A  e.  V )  /\  (
k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R
) )  /\  f : A --> U. R )  /\  x  e.  k )  ->  x  e.  k )
5250, 512thd 255 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( R  e.  Top  /\  A  e.  V )  /\  (
k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R
) )  /\  f : A --> U. R )  /\  x  e.  k )  ->  ( x  e.  A  <->  x  e.  k ) )
5352imbi1d 331 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( R  e.  Top  /\  A  e.  V )  /\  (
k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R
) )  /\  f : A --> U. R )  /\  x  e.  k )  ->  ( ( x  e.  A  ->  ( f `  x )  e.  v )  <->  ( x  e.  k  ->  ( f `  x )  e.  v ) ) )
54 ffvelrn 6357 . . . . . . . . . . . . . . . . . . 19  |-  ( ( f : A --> U. R  /\  x  e.  A
)  ->  ( f `  x )  e.  U. R )
5554ex 450 . . . . . . . . . . . . . . . . . 18  |-  ( f : A --> U. R  ->  ( x  e.  A  ->  ( f `  x
)  e.  U. R
) )
5655adantl 482 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( R  e. 
Top  /\  A  e.  V )  /\  (
k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R
) )  /\  f : A --> U. R )  -> 
( x  e.  A  ->  ( f `  x
)  e.  U. R
) )
5756adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( R  e.  Top  /\  A  e.  V )  /\  (
k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R
) )  /\  f : A --> U. R )  /\  -.  x  e.  k
)  ->  ( x  e.  A  ->  ( f `
 x )  e. 
U. R ) )
58 pm2.21 120 . . . . . . . . . . . . . . . . 17  |-  ( -.  x  e.  k  -> 
( x  e.  k  ->  ( f `  x )  e.  v ) )
5958adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( R  e.  Top  /\  A  e.  V )  /\  (
k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R
) )  /\  f : A --> U. R )  /\  -.  x  e.  k
)  ->  ( x  e.  k  ->  ( f `
 x )  e.  v ) )
6057, 592thd 255 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( R  e.  Top  /\  A  e.  V )  /\  (
k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R
) )  /\  f : A --> U. R )  /\  -.  x  e.  k
)  ->  ( (
x  e.  A  -> 
( f `  x
)  e.  U. R
)  <->  ( x  e.  k  ->  ( f `  x )  e.  v ) ) )
6141, 44, 53, 60ifbothda 4123 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e. 
Top  /\  A  e.  V )  /\  (
k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R
) )  /\  f : A --> U. R )  -> 
( ( x  e.  A  ->  ( f `  x )  e.  if ( x  e.  k ,  v ,  U. R ) )  <->  ( x  e.  k  ->  ( f `
 x )  e.  v ) ) )
6261ralbidv2 2984 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e. 
Top  /\  A  e.  V )  /\  (
k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R
) )  /\  f : A --> U. R )  -> 
( A. x  e.  A  ( f `  x )  e.  if ( x  e.  k ,  v ,  U. R )  <->  A. x  e.  k  ( f `  x )  e.  v ) )
63 ffn 6045 . . . . . . . . . . . . . . 15  |-  ( f : A --> U. R  ->  f  Fn  A )
6463adantl 482 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e. 
Top  /\  A  e.  V )  /\  (
k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R
) )  /\  f : A --> U. R )  -> 
f  Fn  A )
65 vex 3203 . . . . . . . . . . . . . . . 16  |-  f  e. 
_V
6665elixp 7915 . . . . . . . . . . . . . . 15  |-  ( f  e.  X_ x  e.  A  if ( x  e.  k ,  v ,  U. R )  <->  ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  if ( x  e.  k ,  v ,  U. R ) ) )
6766baib 944 . . . . . . . . . . . . . 14  |-  ( f  Fn  A  ->  (
f  e.  X_ x  e.  A  if (
x  e.  k ,  v ,  U. R
)  <->  A. x  e.  A  ( f `  x
)  e.  if ( x  e.  k ,  v ,  U. R
) ) )
6864, 67syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e. 
Top  /\  A  e.  V )  /\  (
k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R
) )  /\  f : A --> U. R )  -> 
( f  e.  X_ x  e.  A  if ( x  e.  k ,  v ,  U. R )  <->  A. x  e.  A  ( f `  x )  e.  if ( x  e.  k ,  v ,  U. R ) ) )
69 ffun 6048 . . . . . . . . . . . . . . 15  |-  ( f : A --> U. R  ->  Fun  f )
7069adantl 482 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e. 
Top  /\  A  e.  V )  /\  (
k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R
) )  /\  f : A --> U. R )  ->  Fun  f )
71 fdm 6051 . . . . . . . . . . . . . . . 16  |-  ( f : A --> U. R  ->  dom  f  =  A )
7271adantl 482 . . . . . . . . . . . . . . 15  |-  ( ( ( ( R  e. 
Top  /\  A  e.  V )  /\  (
k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R
) )  /\  f : A --> U. R )  ->  dom  f  =  A
)
7349, 72sseqtr4d 3642 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e. 
Top  /\  A  e.  V )  /\  (
k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R
) )  /\  f : A --> U. R )  -> 
k  C_  dom  f )
74 funimass4 6247 . . . . . . . . . . . . . 14  |-  ( ( Fun  f  /\  k  C_ 
dom  f )  -> 
( ( f "
k )  C_  v  <->  A. x  e.  k  ( f `  x )  e.  v ) )
7570, 73, 74syl2anc 693 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e. 
Top  /\  A  e.  V )  /\  (
k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R
) )  /\  f : A --> U. R )  -> 
( ( f "
k )  C_  v  <->  A. x  e.  k  ( f `  x )  e.  v ) )
7662, 68, 753bitr4d 300 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. 
Top  /\  A  e.  V )  /\  (
k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R
) )  /\  f : A --> U. R )  -> 
( f  e.  X_ x  e.  A  if ( x  e.  k ,  v ,  U. R )  <->  ( f " k )  C_  v ) )
7738, 76sylan2 491 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
Top  /\  A  e.  V )  /\  (
k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R
) )  /\  f  e.  ( U. R  ^m  A ) )  -> 
( f  e.  X_ x  e.  A  if ( x  e.  k ,  v ,  U. R )  <->  ( f " k )  C_  v ) )
7877rabbi2dva 3821 . . . . . . . . . 10  |-  ( ( ( R  e.  Top  /\  A  e.  V )  /\  ( k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R ) )  -> 
( ( U. R  ^m  A )  i^i  X_ x  e.  A  if (
x  e.  k ,  v ,  U. R
) )  =  {
f  e.  ( U. R  ^m  A )  |  ( f " k
)  C_  v }
)
79 elssuni 4467 . . . . . . . . . . . . . . . 16  |-  ( v  e.  R  ->  v  C_ 
U. R )
8079ad2antll 765 . . . . . . . . . . . . . . 15  |-  ( ( ( R  e.  Top  /\  A  e.  V )  /\  ( k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R ) )  -> 
v  C_  U. R )
81 ssid 3624 . . . . . . . . . . . . . . 15  |-  U. R  C_ 
U. R
82 sseq1 3626 . . . . . . . . . . . . . . . 16  |-  ( v  =  if ( x  e.  k ,  v ,  U. R )  ->  ( v  C_  U. R  <->  if ( x  e.  k ,  v , 
U. R )  C_  U. R ) )
83 sseq1 3626 . . . . . . . . . . . . . . . 16  |-  ( U. R  =  if (
x  e.  k ,  v ,  U. R
)  ->  ( U. R  C_  U. R  <->  if (
x  e.  k ,  v ,  U. R
)  C_  U. R ) )
8482, 83ifboth 4124 . . . . . . . . . . . . . . 15  |-  ( ( v  C_  U. R  /\  U. R  C_  U. R )  ->  if ( x  e.  k ,  v ,  U. R ) 
C_  U. R )
8580, 81, 84sylancl 694 . . . . . . . . . . . . . 14  |-  ( ( ( R  e.  Top  /\  A  e.  V )  /\  ( k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R ) )  ->  if ( x  e.  k ,  v ,  U. R )  C_  U. R
)
8685ralrimivw 2967 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  Top  /\  A  e.  V )  /\  ( k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R ) )  ->  A. x  e.  A  if ( x  e.  k ,  v ,  U. R )  C_  U. R
)
87 ss2ixp 7921 . . . . . . . . . . . . 13  |-  ( A. x  e.  A  if ( x  e.  k ,  v ,  U. R )  C_  U. R  -> 
X_ x  e.  A  if ( x  e.  k ,  v ,  U. R )  C_  X_ x  e.  A  U. R )
8886, 87syl 17 . . . . . . . . . . . 12  |-  ( ( ( R  e.  Top  /\  A  e.  V )  /\  ( k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R ) )  ->  X_ x  e.  A  if ( x  e.  k ,  v ,  U. R )  C_  X_ x  e.  A  U. R )
89 simplr 792 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  Top  /\  A  e.  V )  /\  ( k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R ) )  ->  A  e.  V )
90 uniexg 6955 . . . . . . . . . . . . . 14  |-  ( R  e.  Top  ->  U. R  e.  _V )
9190ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  Top  /\  A  e.  V )  /\  ( k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R ) )  ->  U. R  e.  _V )
92 ixpconstg 7917 . . . . . . . . . . . . 13  |-  ( ( A  e.  V  /\  U. R  e.  _V )  -> 
X_ x  e.  A  U. R  =  ( U. R  ^m  A ) )
9389, 91, 92syl2anc 693 . . . . . . . . . . . 12  |-  ( ( ( R  e.  Top  /\  A  e.  V )  /\  ( k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R ) )  ->  X_ x  e.  A  U. R  =  ( U. R  ^m  A ) )
9488, 93sseqtrd 3641 . . . . . . . . . . 11  |-  ( ( ( R  e.  Top  /\  A  e.  V )  /\  ( k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R ) )  ->  X_ x  e.  A  if ( x  e.  k ,  v ,  U. R )  C_  ( U. R  ^m  A ) )
95 sseqin2 3817 . . . . . . . . . . 11  |-  ( X_ x  e.  A  if ( x  e.  k ,  v ,  U. R )  C_  ( U. R  ^m  A )  <-> 
( ( U. R  ^m  A )  i^i  X_ x  e.  A  if (
x  e.  k ,  v ,  U. R
) )  =  X_ x  e.  A  if ( x  e.  k ,  v ,  U. R ) )
9694, 95sylib 208 . . . . . . . . . 10  |-  ( ( ( R  e.  Top  /\  A  e.  V )  /\  ( k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R ) )  -> 
( ( U. R  ^m  A )  i^i  X_ x  e.  A  if (
x  e.  k ,  v ,  U. R
) )  =  X_ x  e.  A  if ( x  e.  k ,  v ,  U. R ) )
9778, 96eqtr3d 2658 . . . . . . . . 9  |-  ( ( ( R  e.  Top  /\  A  e.  V )  /\  ( k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R ) )  ->  { f  e.  ( U. R  ^m  A
)  |  ( f
" k )  C_  v }  =  X_ x  e.  A  if (
x  e.  k ,  v ,  U. R
) )
9811ad2antrr 762 . . . . . . . . . 10  |-  ( ( ( R  e.  Top  /\  A  e.  V )  /\  ( k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R ) )  -> 
( A  X.  { R } ) : A --> Top )
99 inss2 3834 . . . . . . . . . . 11  |-  ( ~P A  i^i  Fin )  C_ 
Fin
10099, 46sseldi 3601 . . . . . . . . . 10  |-  ( ( ( R  e.  Top  /\  A  e.  V )  /\  ( k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R ) )  -> 
k  e.  Fin )
101 simplrr 801 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. 
Top  /\  A  e.  V )  /\  (
k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R
) )  /\  x  e.  A )  ->  v  e.  R )
10226topopn 20711 . . . . . . . . . . . . 13  |-  ( R  e.  Top  ->  U. R  e.  R )
103102ad3antrrr 766 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. 
Top  /\  A  e.  V )  /\  (
k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R
) )  /\  x  e.  A )  ->  U. R  e.  R )
104101, 103ifcld 4131 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
Top  /\  A  e.  V )  /\  (
k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R
) )  /\  x  e.  A )  ->  if ( x  e.  k ,  v ,  U. R )  e.  R
)
105 simpll 790 . . . . . . . . . . . 12  |-  ( ( ( R  e.  Top  /\  A  e.  V )  /\  ( k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R ) )  ->  R  e.  Top )
106 fvconst2g 6467 . . . . . . . . . . . 12  |-  ( ( R  e.  Top  /\  x  e.  A )  ->  ( ( A  X.  { R } ) `  x )  =  R )
107105, 106sylan 488 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
Top  /\  A  e.  V )  /\  (
k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R
) )  /\  x  e.  A )  ->  (
( A  X.  { R } ) `  x
)  =  R )
108104, 107eleqtrrd 2704 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Top  /\  A  e.  V )  /\  (
k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R
) )  /\  x  e.  A )  ->  if ( x  e.  k ,  v ,  U. R )  e.  ( ( A  X.  { R } ) `  x
) )
109 eldifn 3733 . . . . . . . . . . . . 13  |-  ( x  e.  ( A  \ 
k )  ->  -.  x  e.  k )
110109iffalsed 4097 . . . . . . . . . . . 12  |-  ( x  e.  ( A  \ 
k )  ->  if ( x  e.  k ,  v ,  U. R )  =  U. R )
111110adantl 482 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
Top  /\  A  e.  V )  /\  (
k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R
) )  /\  x  e.  ( A  \  k
) )  ->  if ( x  e.  k ,  v ,  U. R )  =  U. R )
112 eldifi 3732 . . . . . . . . . . . . 13  |-  ( x  e.  ( A  \ 
k )  ->  x  e.  A )
113112, 107sylan2 491 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. 
Top  /\  A  e.  V )  /\  (
k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R
) )  /\  x  e.  ( A  \  k
) )  ->  (
( A  X.  { R } ) `  x
)  =  R )
114113unieqd 4446 . . . . . . . . . . 11  |-  ( ( ( ( R  e. 
Top  /\  A  e.  V )  /\  (
k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R
) )  /\  x  e.  ( A  \  k
) )  ->  U. (
( A  X.  { R } ) `  x
)  =  U. R
)
115111, 114eqtr4d 2659 . . . . . . . . . 10  |-  ( ( ( ( R  e. 
Top  /\  A  e.  V )  /\  (
k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R
) )  /\  x  e.  ( A  \  k
) )  ->  if ( x  e.  k ,  v ,  U. R )  =  U. ( ( A  X.  { R } ) `  x ) )
11689, 98, 100, 108, 115ptopn 21386 . . . . . . . . 9  |-  ( ( ( R  e.  Top  /\  A  e.  V )  /\  ( k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R ) )  ->  X_ x  e.  A  if ( x  e.  k ,  v ,  U. R )  e.  (
Xt_ `  ( A  X.  { R } ) ) )
11797, 116eqeltrd 2701 . . . . . . . 8  |-  ( ( ( R  e.  Top  /\  A  e.  V )  /\  ( k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R ) )  ->  { f  e.  ( U. R  ^m  A
)  |  ( f
" k )  C_  v }  e.  ( Xt_ `  ( A  X.  { R } ) ) )
118 eleq1 2689 . . . . . . . 8  |-  ( x  =  { f  e.  ( U. R  ^m  A )  |  ( f " k ) 
C_  v }  ->  ( x  e.  ( Xt_ `  ( A  X.  { R } ) )  <->  { f  e.  ( U. R  ^m  A )  |  ( f " k ) 
C_  v }  e.  ( Xt_ `  ( A  X.  { R }
) ) ) )
119117, 118syl5ibrcom 237 . . . . . . 7  |-  ( ( ( R  e.  Top  /\  A  e.  V )  /\  ( k  e.  ( ~P A  i^i  Fin )  /\  v  e.  R ) )  -> 
( x  =  {
f  e.  ( U. R  ^m  A )  |  ( f " k
)  C_  v }  ->  x  e.  ( Xt_ `  ( A  X.  { R } ) ) ) )
120119rexlimdvva 3038 . . . . . 6  |-  ( ( R  e.  Top  /\  A  e.  V )  ->  ( E. k  e.  ( ~P A  i^i  Fin ) E. v  e.  R  x  =  {
f  e.  ( U. R  ^m  A )  |  ( f " k
)  C_  v }  ->  x  e.  ( Xt_ `  ( A  X.  { R } ) ) ) )
121120abssdv 3676 . . . . 5  |-  ( ( R  e.  Top  /\  A  e.  V )  ->  { x  |  E. k  e.  ( ~P A  i^i  Fin ) E. v  e.  R  x  =  { f  e.  ( U. R  ^m  A )  |  ( f " k ) 
C_  v } }  C_  ( Xt_ `  ( A  X.  { R }
) ) )
12237, 121eqsstrd 3639 . . . 4  |-  ( ( R  e.  Top  /\  A  e.  V )  ->  ran  ( k  e. 
{ x  e.  ~P A  |  ( ~P At  x )  e.  Comp } ,  v  e.  R  |->  { f  e.  ( ~P A  Cn  R
)  |  ( f
" k )  C_  v } )  C_  ( Xt_ `  ( A  X.  { R } ) ) )
123 tgfiss 20795 . . . 4  |-  ( ( ( Xt_ `  ( A  X.  { R }
) )  e.  Top  /\ 
ran  ( k  e. 
{ x  e.  ~P A  |  ( ~P At  x )  e.  Comp } ,  v  e.  R  |->  { f  e.  ( ~P A  Cn  R
)  |  ( f
" k )  C_  v } )  C_  ( Xt_ `  ( A  X.  { R } ) ) )  ->  ( topGen `  ( fi `  ran  ( k  e.  {
x  e.  ~P A  |  ( ~P At  x
)  e.  Comp } , 
v  e.  R  |->  { f  e.  ( ~P A  Cn  R )  |  ( f "
k )  C_  v } ) ) ) 
C_  ( Xt_ `  ( A  X.  { R }
) ) )
12414, 122, 123syl2anc 693 . . 3  |-  ( ( R  e.  Top  /\  A  e.  V )  ->  ( topGen `  ( fi ` 
ran  ( k  e. 
{ x  e.  ~P A  |  ( ~P At  x )  e.  Comp } ,  v  e.  R  |->  { f  e.  ( ~P A  Cn  R
)  |  ( f
" k )  C_  v } ) ) ) 
C_  ( Xt_ `  ( A  X.  { R }
) ) )
1259, 124eqsstrd 3639 . 2  |-  ( ( R  e.  Top  /\  A  e.  V )  ->  ( R  ^ko  ~P A )  C_  ( Xt_ `  ( A  X.  { R }
) ) )
126 eqid 2622 . . . . . . . 8  |-  ( Xt_ `  ( A  X.  { R } ) )  =  ( Xt_ `  ( A  X.  { R }
) )
127126, 26ptuniconst 21401 . . . . . . 7  |-  ( ( A  e.  V  /\  R  e.  Top )  ->  ( U. R  ^m  A )  =  U. ( Xt_ `  ( A  X.  { R }
) ) )
128127ancoms 469 . . . . . 6  |-  ( ( R  e.  Top  /\  A  e.  V )  ->  ( U. R  ^m  A )  =  U. ( Xt_ `  ( A  X.  { R }
) ) )
12930, 128eqtrd 2656 . . . . 5  |-  ( ( R  e.  Top  /\  A  e.  V )  ->  ( ~P A  Cn  R )  =  U. ( Xt_ `  ( A  X.  { R }
) ) )
130129oveq2d 6666 . . . 4  |-  ( ( R  e.  Top  /\  A  e.  V )  ->  ( ( Xt_ `  ( A  X.  { R }
) )t  ( ~P A  Cn  R ) )  =  ( ( Xt_ `  ( A  X.  { R }
) )t  U. ( Xt_ `  ( A  X.  { R }
) ) ) )
131 eqid 2622 . . . . . 6  |-  U. ( Xt_ `  ( A  X.  { R } ) )  =  U. ( Xt_ `  ( A  X.  { R } ) )
132131restid 16094 . . . . 5  |-  ( (
Xt_ `  ( A  X.  { R } ) )  e.  Top  ->  ( ( Xt_ `  ( A  X.  { R }
) )t  U. ( Xt_ `  ( A  X.  { R }
) ) )  =  ( Xt_ `  ( A  X.  { R }
) ) )
13314, 132syl 17 . . . 4  |-  ( ( R  e.  Top  /\  A  e.  V )  ->  ( ( Xt_ `  ( A  X.  { R }
) )t  U. ( Xt_ `  ( A  X.  { R }
) ) )  =  ( Xt_ `  ( A  X.  { R }
) ) )
134130, 133eqtrd 2656 . . 3  |-  ( ( R  e.  Top  /\  A  e.  V )  ->  ( ( Xt_ `  ( A  X.  { R }
) )t  ( ~P A  Cn  R ) )  =  ( Xt_ `  ( A  X.  { R }
) ) )
1355, 126xkoptsub 21457 . . . 4  |-  ( ( ~P A  e.  Top  /\  R  e.  Top )  ->  ( ( Xt_ `  ( A  X.  { R }
) )t  ( ~P A  Cn  R ) )  C_  ( R  ^ko  ~P A ) )
1362, 3, 135syl2anc 693 . . 3  |-  ( ( R  e.  Top  /\  A  e.  V )  ->  ( ( Xt_ `  ( A  X.  { R }
) )t  ( ~P A  Cn  R ) )  C_  ( R  ^ko  ~P A ) )
137134, 136eqsstr3d 3640 . 2  |-  ( ( R  e.  Top  /\  A  e.  V )  ->  ( Xt_ `  ( A  X.  { R }
) )  C_  ( R  ^ko  ~P A ) )
138125, 137eqssd 3620 1  |-  ( ( R  e.  Top  /\  A  e.  V )  ->  ( R  ^ko  ~P A )  =  ( Xt_ `  ( A  X.  { R }
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    \ cdif 3571    i^i cin 3573    C_ wss 3574   ifcif 4086   ~Pcpw 4158   {csn 4177   U.cuni 4436    X. cxp 5112   dom cdm 5114   ran crn 5115   "cima 5117   Fun wfun 5882    Fn wfn 5883   -->wf 5884   ` cfv 5888  (class class class)co 6650    |-> cmpt2 6652    ^m cmap 7857   X_cixp 7908   Fincfn 7955   ficfi 8316   ↾t crest 16081   topGenctg 16098   Xt_cpt 16099   Topctop 20698  TopOnctopon 20715    Cn ccn 21028   Compccmp 21189    ^ko cxko 21364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-rest 16083  df-topgen 16104  df-pt 16105  df-top 20699  df-topon 20716  df-bases 20750  df-cn 21031  df-cmp 21190  df-xko 21366
This theorem is referenced by:  tmdgsum  21899  tmdgsum2  21900  symgtgp  21905
  Copyright terms: Public domain W3C validator