MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fseqdom Structured version   Visualization version   Unicode version

Theorem fseqdom 8849
Description: One half of fseqen 8850. (Contributed by Mario Carneiro, 18-Nov-2014.)
Assertion
Ref Expression
fseqdom  |-  ( A  e.  V  ->  ( om  X.  A )  ~<_  U_ n  e.  om  ( A  ^m  n ) )
Distinct variable group:    A, n
Allowed substitution hint:    V( n)

Proof of Theorem fseqdom
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omex 8540 . . 3  |-  om  e.  _V
2 ovex 6678 . . 3  |-  ( A  ^m  n )  e. 
_V
31, 2iunex 7147 . 2  |-  U_ n  e.  om  ( A  ^m  n )  e.  _V
4 xp1st 7198 . . . . . 6  |-  ( x  e.  ( om  X.  A )  ->  ( 1st `  x )  e. 
om )
5 peano2 7086 . . . . . 6  |-  ( ( 1st `  x )  e.  om  ->  suc  ( 1st `  x )  e.  om )
64, 5syl 17 . . . . 5  |-  ( x  e.  ( om  X.  A )  ->  suc  ( 1st `  x )  e.  om )
7 xp2nd 7199 . . . . . . . 8  |-  ( x  e.  ( om  X.  A )  ->  ( 2nd `  x )  e.  A )
8 fconst6g 6094 . . . . . . . 8  |-  ( ( 2nd `  x )  e.  A  ->  ( suc  ( 1st `  x
)  X.  { ( 2nd `  x ) } ) : suc  ( 1st `  x ) --> A )
97, 8syl 17 . . . . . . 7  |-  ( x  e.  ( om  X.  A )  ->  ( suc  ( 1st `  x
)  X.  { ( 2nd `  x ) } ) : suc  ( 1st `  x ) --> A )
109adantl 482 . . . . . 6  |-  ( ( A  e.  V  /\  x  e.  ( om  X.  A ) )  -> 
( suc  ( 1st `  x )  X.  {
( 2nd `  x
) } ) : suc  ( 1st `  x
) --> A )
11 elmapg 7870 . . . . . . 7  |-  ( ( A  e.  V  /\  suc  ( 1st `  x
)  e.  om )  ->  ( ( suc  ( 1st `  x )  X. 
{ ( 2nd `  x
) } )  e.  ( A  ^m  suc  ( 1st `  x ) )  <->  ( suc  ( 1st `  x )  X. 
{ ( 2nd `  x
) } ) : suc  ( 1st `  x
) --> A ) )
126, 11sylan2 491 . . . . . 6  |-  ( ( A  e.  V  /\  x  e.  ( om  X.  A ) )  -> 
( ( suc  ( 1st `  x )  X. 
{ ( 2nd `  x
) } )  e.  ( A  ^m  suc  ( 1st `  x ) )  <->  ( suc  ( 1st `  x )  X. 
{ ( 2nd `  x
) } ) : suc  ( 1st `  x
) --> A ) )
1310, 12mpbird 247 . . . . 5  |-  ( ( A  e.  V  /\  x  e.  ( om  X.  A ) )  -> 
( suc  ( 1st `  x )  X.  {
( 2nd `  x
) } )  e.  ( A  ^m  suc  ( 1st `  x ) ) )
14 oveq2 6658 . . . . . 6  |-  ( n  =  suc  ( 1st `  x )  ->  ( A  ^m  n )  =  ( A  ^m  suc  ( 1st `  x ) ) )
1514eliuni 4526 . . . . 5  |-  ( ( suc  ( 1st `  x
)  e.  om  /\  ( suc  ( 1st `  x
)  X.  { ( 2nd `  x ) } )  e.  ( A  ^m  suc  ( 1st `  x ) ) )  ->  ( suc  ( 1st `  x )  X.  { ( 2nd `  x ) } )  e.  U_ n  e. 
om  ( A  ^m  n ) )
166, 13, 15syl2an2 875 . . . 4  |-  ( ( A  e.  V  /\  x  e.  ( om  X.  A ) )  -> 
( suc  ( 1st `  x )  X.  {
( 2nd `  x
) } )  e. 
U_ n  e.  om  ( A  ^m  n
) )
1716ex 450 . . 3  |-  ( A  e.  V  ->  (
x  e.  ( om 
X.  A )  -> 
( suc  ( 1st `  x )  X.  {
( 2nd `  x
) } )  e. 
U_ n  e.  om  ( A  ^m  n
) ) )
18 nsuceq0 5805 . . . . . . 7  |-  suc  ( 1st `  x )  =/=  (/)
19 fvex 6201 . . . . . . . 8  |-  ( 2nd `  x )  e.  _V
2019snnz 4309 . . . . . . 7  |-  { ( 2nd `  x ) }  =/=  (/)
21 xp11 5569 . . . . . . 7  |-  ( ( suc  ( 1st `  x
)  =/=  (/)  /\  {
( 2nd `  x
) }  =/=  (/) )  -> 
( ( suc  ( 1st `  x )  X. 
{ ( 2nd `  x
) } )  =  ( suc  ( 1st `  y )  X.  {
( 2nd `  y
) } )  <->  ( suc  ( 1st `  x )  =  suc  ( 1st `  y )  /\  {
( 2nd `  x
) }  =  {
( 2nd `  y
) } ) ) )
2218, 20, 21mp2an 708 . . . . . 6  |-  ( ( suc  ( 1st `  x
)  X.  { ( 2nd `  x ) } )  =  ( suc  ( 1st `  y
)  X.  { ( 2nd `  y ) } )  <->  ( suc  ( 1st `  x )  =  suc  ( 1st `  y )  /\  {
( 2nd `  x
) }  =  {
( 2nd `  y
) } ) )
23 xp1st 7198 . . . . . . . 8  |-  ( y  e.  ( om  X.  A )  ->  ( 1st `  y )  e. 
om )
24 peano4 7088 . . . . . . . 8  |-  ( ( ( 1st `  x
)  e.  om  /\  ( 1st `  y )  e.  om )  -> 
( suc  ( 1st `  x )  =  suc  ( 1st `  y )  <-> 
( 1st `  x
)  =  ( 1st `  y ) ) )
254, 23, 24syl2an 494 . . . . . . 7  |-  ( ( x  e.  ( om 
X.  A )  /\  y  e.  ( om  X.  A ) )  -> 
( suc  ( 1st `  x )  =  suc  ( 1st `  y )  <-> 
( 1st `  x
)  =  ( 1st `  y ) ) )
26 sneqbg 4374 . . . . . . . 8  |-  ( ( 2nd `  x )  e.  _V  ->  ( { ( 2nd `  x
) }  =  {
( 2nd `  y
) }  <->  ( 2nd `  x )  =  ( 2nd `  y ) ) )
2719, 26mp1i 13 . . . . . . 7  |-  ( ( x  e.  ( om 
X.  A )  /\  y  e.  ( om  X.  A ) )  -> 
( { ( 2nd `  x ) }  =  { ( 2nd `  y
) }  <->  ( 2nd `  x )  =  ( 2nd `  y ) ) )
2825, 27anbi12d 747 . . . . . 6  |-  ( ( x  e.  ( om 
X.  A )  /\  y  e.  ( om  X.  A ) )  -> 
( ( suc  ( 1st `  x )  =  suc  ( 1st `  y
)  /\  { ( 2nd `  x ) }  =  { ( 2nd `  y ) } )  <-> 
( ( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x )  =  ( 2nd `  y
) ) ) )
2922, 28syl5bb 272 . . . . 5  |-  ( ( x  e.  ( om 
X.  A )  /\  y  e.  ( om  X.  A ) )  -> 
( ( suc  ( 1st `  x )  X. 
{ ( 2nd `  x
) } )  =  ( suc  ( 1st `  y )  X.  {
( 2nd `  y
) } )  <->  ( ( 1st `  x )  =  ( 1st `  y
)  /\  ( 2nd `  x )  =  ( 2nd `  y ) ) ) )
30 xpopth 7207 . . . . 5  |-  ( ( x  e.  ( om 
X.  A )  /\  y  e.  ( om  X.  A ) )  -> 
( ( ( 1st `  x )  =  ( 1st `  y )  /\  ( 2nd `  x
)  =  ( 2nd `  y ) )  <->  x  =  y ) )
3129, 30bitrd 268 . . . 4  |-  ( ( x  e.  ( om 
X.  A )  /\  y  e.  ( om  X.  A ) )  -> 
( ( suc  ( 1st `  x )  X. 
{ ( 2nd `  x
) } )  =  ( suc  ( 1st `  y )  X.  {
( 2nd `  y
) } )  <->  x  =  y ) )
3231a1i 11 . . 3  |-  ( A  e.  V  ->  (
( x  e.  ( om  X.  A )  /\  y  e.  ( om  X.  A ) )  ->  ( ( suc  ( 1st `  x
)  X.  { ( 2nd `  x ) } )  =  ( suc  ( 1st `  y
)  X.  { ( 2nd `  y ) } )  <->  x  =  y ) ) )
3317, 32dom2d 7996 . 2  |-  ( A  e.  V  ->  ( U_ n  e.  om  ( A  ^m  n
)  e.  _V  ->  ( om  X.  A )  ~<_ 
U_ n  e.  om  ( A  ^m  n
) ) )
343, 33mpi 20 1  |-  ( A  e.  V  ->  ( om  X.  A )  ~<_  U_ n  e.  om  ( A  ^m  n ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   _Vcvv 3200   (/)c0 3915   {csn 4177   U_ciun 4520   class class class wbr 4653    X. cxp 5112   suc csuc 5725   -->wf 5884   ` cfv 5888  (class class class)co 6650   omcom 7065   1stc1st 7166   2ndc2nd 7167    ^m cmap 7857    ~<_ cdom 7953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-map 7859  df-dom 7957
This theorem is referenced by:  fseqen  8850
  Copyright terms: Public domain W3C validator