| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xrinfmexpnf | Structured version Visualization version Unicode version | ||
| Description: Adding plus infinity to a set does not affect the existence of its infimum. (Contributed by NM, 19-Jan-2006.) |
| Ref | Expression |
|---|---|
| xrinfmexpnf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elun 3753 |
. . . . . 6
| |
| 2 | simpr 477 |
. . . . . . 7
| |
| 3 | velsn 4193 |
. . . . . . . . 9
| |
| 4 | pnfnlt 11962 |
. . . . . . . . . 10
| |
| 5 | breq1 4656 |
. . . . . . . . . . 11
| |
| 6 | 5 | notbid 308 |
. . . . . . . . . 10
|
| 7 | 4, 6 | syl5ibrcom 237 |
. . . . . . . . 9
|
| 8 | 3, 7 | syl5bi 232 |
. . . . . . . 8
|
| 9 | 8 | adantr 481 |
. . . . . . 7
|
| 10 | 2, 9 | jaod 395 |
. . . . . 6
|
| 11 | 1, 10 | syl5bi 232 |
. . . . 5
|
| 12 | 11 | ex 450 |
. . . 4
|
| 13 | 12 | ralimdv2 2961 |
. . 3
|
| 14 | elun1 3780 |
. . . . . . . 8
| |
| 15 | 14 | anim1i 592 |
. . . . . . 7
|
| 16 | 15 | reximi2 3010 |
. . . . . 6
|
| 17 | 16 | imim2i 16 |
. . . . 5
|
| 18 | 17 | ralimi 2952 |
. . . 4
|
| 19 | 18 | a1i 11 |
. . 3
|
| 20 | 13, 19 | anim12d 586 |
. 2
|
| 21 | 20 | reximia 3009 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-xp 5120 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 |
| This theorem is referenced by: xrinfmss 12140 |
| Copyright terms: Public domain | W3C validator |