| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xmullem2 | Structured version Visualization version Unicode version | ||
| Description: Lemma for xmulneg1 12099. (Contributed by Mario Carneiro, 20-Aug-2015.) |
| Ref | Expression |
|---|---|
| xmullem2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfnepnf 10095 |
. . . . . . . . . . . 12
| |
| 2 | eqeq1 2626 |
. . . . . . . . . . . . 13
| |
| 3 | 2 | necon3bbid 2831 |
. . . . . . . . . . . 12
|
| 4 | 1, 3 | mpbiri 248 |
. . . . . . . . . . 11
|
| 5 | 4 | con2i 134 |
. . . . . . . . . 10
|
| 6 | 5 | adantl 482 |
. . . . . . . . 9
|
| 7 | 0xr 10086 |
. . . . . . . . . . . . 13
| |
| 8 | nltmnf 11963 |
. . . . . . . . . . . . 13
| |
| 9 | 7, 8 | ax-mp 5 |
. . . . . . . . . . . 12
|
| 10 | breq2 4657 |
. . . . . . . . . . . 12
| |
| 11 | 9, 10 | mtbiri 317 |
. . . . . . . . . . 11
|
| 12 | 11 | con2i 134 |
. . . . . . . . . 10
|
| 13 | 12 | adantr 481 |
. . . . . . . . 9
|
| 14 | 6, 13 | jaoi 394 |
. . . . . . . 8
|
| 15 | 14 | a1i 11 |
. . . . . . 7
|
| 16 | simpr 477 |
. . . . . . . . . 10
| |
| 17 | xrltnsym 11970 |
. . . . . . . . . 10
| |
| 18 | 16, 7, 17 | sylancl 694 |
. . . . . . . . 9
|
| 19 | 18 | adantrd 484 |
. . . . . . . 8
|
| 20 | breq2 4657 |
. . . . . . . . . . 11
| |
| 21 | 9, 20 | mtbiri 317 |
. . . . . . . . . 10
|
| 22 | 21 | adantl 482 |
. . . . . . . . 9
|
| 23 | 22 | a1i 11 |
. . . . . . . 8
|
| 24 | 19, 23 | jaod 395 |
. . . . . . 7
|
| 25 | 15, 24 | orim12d 883 |
. . . . . 6
|
| 26 | ianor 509 |
. . . . . . 7
| |
| 27 | orcom 402 |
. . . . . . 7
| |
| 28 | 26, 27 | bitri 264 |
. . . . . 6
|
| 29 | 25, 28 | syl6ibr 242 |
. . . . 5
|
| 30 | 18 | con2d 129 |
. . . . . . . . 9
|
| 31 | 30 | adantrd 484 |
. . . . . . . 8
|
| 32 | pnfnlt 11962 |
. . . . . . . . . . 11
| |
| 33 | 7, 32 | ax-mp 5 |
. . . . . . . . . 10
|
| 34 | simpr 477 |
. . . . . . . . . . 11
| |
| 35 | 34 | breq1d 4663 |
. . . . . . . . . 10
|
| 36 | 33, 35 | mtbiri 317 |
. . . . . . . . 9
|
| 37 | 36 | a1i 11 |
. . . . . . . 8
|
| 38 | 31, 37 | jaod 395 |
. . . . . . 7
|
| 39 | 4 | a1i 11 |
. . . . . . . . 9
|
| 40 | 39 | adantld 483 |
. . . . . . . 8
|
| 41 | breq1 4656 |
. . . . . . . . . . . 12
| |
| 42 | 33, 41 | mtbiri 317 |
. . . . . . . . . . 11
|
| 43 | 42 | con2i 134 |
. . . . . . . . . 10
|
| 44 | 43 | adantr 481 |
. . . . . . . . 9
|
| 45 | 44 | a1i 11 |
. . . . . . . 8
|
| 46 | 40, 45 | jaod 395 |
. . . . . . 7
|
| 47 | 38, 46 | orim12d 883 |
. . . . . 6
|
| 48 | ianor 509 |
. . . . . 6
| |
| 49 | 47, 48 | syl6ibr 242 |
. . . . 5
|
| 50 | 29, 49 | jcad 555 |
. . . 4
|
| 51 | ioran 511 |
. . . 4
| |
| 52 | 50, 51 | syl6ibr 242 |
. . 3
|
| 53 | 21 | con2i 134 |
. . . . . . . . . 10
|
| 54 | 53 | adantr 481 |
. . . . . . . . 9
|
| 55 | 54 | a1i 11 |
. . . . . . . 8
|
| 56 | pnfnemnf 10094 |
. . . . . . . . . . 11
| |
| 57 | eqeq1 2626 |
. . . . . . . . . . . 12
| |
| 58 | 57 | necon3bbid 2831 |
. . . . . . . . . . 11
|
| 59 | 56, 58 | mpbiri 248 |
. . . . . . . . . 10
|
| 60 | 59 | adantl 482 |
. . . . . . . . 9
|
| 61 | 60 | a1i 11 |
. . . . . . . 8
|
| 62 | 55, 61 | jaod 395 |
. . . . . . 7
|
| 63 | 11 | adantl 482 |
. . . . . . . . 9
|
| 64 | 63 | a1i 11 |
. . . . . . . 8
|
| 65 | simpl 473 |
. . . . . . . . . 10
| |
| 66 | xrltnsym 11970 |
. . . . . . . . . 10
| |
| 67 | 65, 7, 66 | sylancl 694 |
. . . . . . . . 9
|
| 68 | 67 | adantrd 484 |
. . . . . . . 8
|
| 69 | 64, 68 | jaod 395 |
. . . . . . 7
|
| 70 | 62, 69 | orim12d 883 |
. . . . . 6
|
| 71 | ianor 509 |
. . . . . . 7
| |
| 72 | orcom 402 |
. . . . . . 7
| |
| 73 | 71, 72 | bitri 264 |
. . . . . 6
|
| 74 | 70, 73 | syl6ibr 242 |
. . . . 5
|
| 75 | 42 | adantl 482 |
. . . . . . . . 9
|
| 76 | 75 | a1i 11 |
. . . . . . . 8
|
| 77 | 67 | con2d 129 |
. . . . . . . . 9
|
| 78 | 77 | adantrd 484 |
. . . . . . . 8
|
| 79 | 76, 78 | jaod 395 |
. . . . . . 7
|
| 80 | breq1 4656 |
. . . . . . . . . . . 12
| |
| 81 | 33, 80 | mtbiri 317 |
. . . . . . . . . . 11
|
| 82 | 81 | con2i 134 |
. . . . . . . . . 10
|
| 83 | 82 | adantr 481 |
. . . . . . . . 9
|
| 84 | 59 | con2i 134 |
. . . . . . . . . 10
|
| 85 | 84 | adantl 482 |
. . . . . . . . 9
|
| 86 | 83, 85 | jaoi 394 |
. . . . . . . 8
|
| 87 | 86 | a1i 11 |
. . . . . . 7
|
| 88 | 79, 87 | orim12d 883 |
. . . . . 6
|
| 89 | ianor 509 |
. . . . . 6
| |
| 90 | 88, 89 | syl6ibr 242 |
. . . . 5
|
| 91 | 74, 90 | jcad 555 |
. . . 4
|
| 92 | ioran 511 |
. . . 4
| |
| 93 | 91, 92 | syl6ibr 242 |
. . 3
|
| 94 | 52, 93 | jcad 555 |
. 2
|
| 95 | or4 550 |
. 2
| |
| 96 | ioran 511 |
. 2
| |
| 97 | 94, 95, 96 | 3imtr4g 285 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-i2m1 10004 ax-1ne0 10005 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 |
| This theorem is referenced by: xmulneg1 12099 |
| Copyright terms: Public domain | W3C validator |