MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmullem2 Structured version   Visualization version   Unicode version

Theorem xmullem2 12095
Description: Lemma for xmulneg1 12099. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xmullem2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( ( ( 0  <  B  /\  A  = +oo )  \/  ( B  <  0  /\  A  = -oo ) )  \/  ( ( 0  < 
A  /\  B  = +oo )  \/  ( A  <  0  /\  B  = -oo ) ) )  ->  -.  ( (
( 0  <  B  /\  A  = -oo )  \/  ( B  <  0  /\  A  = +oo ) )  \/  ( ( 0  < 
A  /\  B  = -oo )  \/  ( A  <  0  /\  B  = +oo ) ) ) ) )

Proof of Theorem xmullem2
StepHypRef Expression
1 mnfnepnf 10095 . . . . . . . . . . . 12  |- -oo  =/= +oo
2 eqeq1 2626 . . . . . . . . . . . . 13  |-  ( A  = -oo  ->  ( A  = +oo  <-> -oo  = +oo ) )
32necon3bbid 2831 . . . . . . . . . . . 12  |-  ( A  = -oo  ->  ( -.  A  = +oo  <-> -oo  =/= +oo ) )
41, 3mpbiri 248 . . . . . . . . . . 11  |-  ( A  = -oo  ->  -.  A  = +oo )
54con2i 134 . . . . . . . . . 10  |-  ( A  = +oo  ->  -.  A  = -oo )
65adantl 482 . . . . . . . . 9  |-  ( ( 0  <  B  /\  A  = +oo )  ->  -.  A  = -oo )
7 0xr 10086 . . . . . . . . . . . . 13  |-  0  e.  RR*
8 nltmnf 11963 . . . . . . . . . . . . 13  |-  ( 0  e.  RR*  ->  -.  0  < -oo )
97, 8ax-mp 5 . . . . . . . . . . . 12  |-  -.  0  < -oo
10 breq2 4657 . . . . . . . . . . . 12  |-  ( A  = -oo  ->  (
0  <  A  <->  0  < -oo ) )
119, 10mtbiri 317 . . . . . . . . . . 11  |-  ( A  = -oo  ->  -.  0  <  A )
1211con2i 134 . . . . . . . . . 10  |-  ( 0  <  A  ->  -.  A  = -oo )
1312adantr 481 . . . . . . . . 9  |-  ( ( 0  <  A  /\  B  = +oo )  ->  -.  A  = -oo )
146, 13jaoi 394 . . . . . . . 8  |-  ( ( ( 0  <  B  /\  A  = +oo )  \/  ( 0  <  A  /\  B  = +oo ) )  ->  -.  A  = -oo )
1514a1i 11 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( ( 0  < 
B  /\  A  = +oo )  \/  (
0  <  A  /\  B  = +oo )
)  ->  -.  A  = -oo ) )
16 simpr 477 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  B  e.  RR* )
17 xrltnsym 11970 . . . . . . . . . 10  |-  ( ( B  e.  RR*  /\  0  e.  RR* )  ->  ( B  <  0  ->  -.  0  <  B ) )
1816, 7, 17sylancl 694 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( B  <  0  ->  -.  0  <  B ) )
1918adantrd 484 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( B  <  0  /\  A  = -oo )  ->  -.  0  <  B ) )
20 breq2 4657 . . . . . . . . . . 11  |-  ( B  = -oo  ->  (
0  <  B  <->  0  < -oo ) )
219, 20mtbiri 317 . . . . . . . . . 10  |-  ( B  = -oo  ->  -.  0  <  B )
2221adantl 482 . . . . . . . . 9  |-  ( ( A  <  0  /\  B  = -oo )  ->  -.  0  <  B
)
2322a1i 11 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A  <  0  /\  B  = -oo )  ->  -.  0  <  B ) )
2419, 23jaod 395 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( ( B  <  0  /\  A  = -oo )  \/  ( A  <  0  /\  B  = -oo ) )  ->  -.  0  <  B ) )
2515, 24orim12d 883 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( ( ( 0  <  B  /\  A  = +oo )  \/  (
0  <  A  /\  B  = +oo )
)  \/  ( ( B  <  0  /\  A  = -oo )  \/  ( A  <  0  /\  B  = -oo ) ) )  -> 
( -.  A  = -oo  \/  -.  0  <  B ) ) )
26 ianor 509 . . . . . . 7  |-  ( -.  ( 0  <  B  /\  A  = -oo ) 
<->  ( -.  0  < 
B  \/  -.  A  = -oo ) )
27 orcom 402 . . . . . . 7  |-  ( ( -.  0  <  B  \/  -.  A  = -oo ) 
<->  ( -.  A  = -oo  \/  -.  0  <  B ) )
2826, 27bitri 264 . . . . . 6  |-  ( -.  ( 0  <  B  /\  A  = -oo ) 
<->  ( -.  A  = -oo  \/  -.  0  <  B ) )
2925, 28syl6ibr 242 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( ( ( 0  <  B  /\  A  = +oo )  \/  (
0  <  A  /\  B  = +oo )
)  \/  ( ( B  <  0  /\  A  = -oo )  \/  ( A  <  0  /\  B  = -oo ) ) )  ->  -.  ( 0  <  B  /\  A  = -oo ) ) )
3018con2d 129 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
0  <  B  ->  -.  B  <  0 ) )
3130adantrd 484 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( 0  <  B  /\  A  = +oo )  ->  -.  B  <  0 ) )
32 pnfnlt 11962 . . . . . . . . . . 11  |-  ( 0  e.  RR*  ->  -. +oo  <  0 )
337, 32ax-mp 5 . . . . . . . . . 10  |-  -. +oo  <  0
34 simpr 477 . . . . . . . . . . 11  |-  ( ( 0  <  A  /\  B  = +oo )  ->  B  = +oo )
3534breq1d 4663 . . . . . . . . . 10  |-  ( ( 0  <  A  /\  B  = +oo )  ->  ( B  <  0  <-> +oo 
<  0 ) )
3633, 35mtbiri 317 . . . . . . . . 9  |-  ( ( 0  <  A  /\  B  = +oo )  ->  -.  B  <  0
)
3736a1i 11 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( 0  <  A  /\  B  = +oo )  ->  -.  B  <  0 ) )
3831, 37jaod 395 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( ( 0  < 
B  /\  A  = +oo )  \/  (
0  <  A  /\  B  = +oo )
)  ->  -.  B  <  0 ) )
394a1i 11 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  = -oo  ->  -.  A  = +oo )
)
4039adantld 483 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( B  <  0  /\  A  = -oo )  ->  -.  A  = +oo ) )
41 breq1 4656 . . . . . . . . . . . 12  |-  ( A  = +oo  ->  ( A  <  0  <-> +oo  <  0
) )
4233, 41mtbiri 317 . . . . . . . . . . 11  |-  ( A  = +oo  ->  -.  A  <  0 )
4342con2i 134 . . . . . . . . . 10  |-  ( A  <  0  ->  -.  A  = +oo )
4443adantr 481 . . . . . . . . 9  |-  ( ( A  <  0  /\  B  = -oo )  ->  -.  A  = +oo )
4544a1i 11 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A  <  0  /\  B  = -oo )  ->  -.  A  = +oo ) )
4640, 45jaod 395 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( ( B  <  0  /\  A  = -oo )  \/  ( A  <  0  /\  B  = -oo ) )  ->  -.  A  = +oo ) )
4738, 46orim12d 883 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( ( ( 0  <  B  /\  A  = +oo )  \/  (
0  <  A  /\  B  = +oo )
)  \/  ( ( B  <  0  /\  A  = -oo )  \/  ( A  <  0  /\  B  = -oo ) ) )  -> 
( -.  B  <  0  \/  -.  A  = +oo ) ) )
48 ianor 509 . . . . . 6  |-  ( -.  ( B  <  0  /\  A  = +oo ) 
<->  ( -.  B  <  0  \/  -.  A  = +oo ) )
4947, 48syl6ibr 242 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( ( ( 0  <  B  /\  A  = +oo )  \/  (
0  <  A  /\  B  = +oo )
)  \/  ( ( B  <  0  /\  A  = -oo )  \/  ( A  <  0  /\  B  = -oo ) ) )  ->  -.  ( B  <  0  /\  A  = +oo ) ) )
5029, 49jcad 555 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( ( ( 0  <  B  /\  A  = +oo )  \/  (
0  <  A  /\  B  = +oo )
)  \/  ( ( B  <  0  /\  A  = -oo )  \/  ( A  <  0  /\  B  = -oo ) ) )  -> 
( -.  ( 0  <  B  /\  A  = -oo )  /\  -.  ( B  <  0  /\  A  = +oo ) ) ) )
51 ioran 511 . . . 4  |-  ( -.  ( ( 0  < 
B  /\  A  = -oo )  \/  ( B  <  0  /\  A  = +oo ) )  <->  ( -.  ( 0  <  B  /\  A  = -oo )  /\  -.  ( B  <  0  /\  A  = +oo ) ) )
5250, 51syl6ibr 242 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( ( ( 0  <  B  /\  A  = +oo )  \/  (
0  <  A  /\  B  = +oo )
)  \/  ( ( B  <  0  /\  A  = -oo )  \/  ( A  <  0  /\  B  = -oo ) ) )  ->  -.  ( ( 0  < 
B  /\  A  = -oo )  \/  ( B  <  0  /\  A  = +oo ) ) ) )
5321con2i 134 . . . . . . . . . 10  |-  ( 0  <  B  ->  -.  B  = -oo )
5453adantr 481 . . . . . . . . 9  |-  ( ( 0  <  B  /\  A  = +oo )  ->  -.  B  = -oo )
5554a1i 11 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( 0  <  B  /\  A  = +oo )  ->  -.  B  = -oo ) )
56 pnfnemnf 10094 . . . . . . . . . . 11  |- +oo  =/= -oo
57 eqeq1 2626 . . . . . . . . . . . 12  |-  ( B  = +oo  ->  ( B  = -oo  <-> +oo  = -oo ) )
5857necon3bbid 2831 . . . . . . . . . . 11  |-  ( B  = +oo  ->  ( -.  B  = -oo  <-> +oo  =/= -oo ) )
5956, 58mpbiri 248 . . . . . . . . . 10  |-  ( B  = +oo  ->  -.  B  = -oo )
6059adantl 482 . . . . . . . . 9  |-  ( ( 0  <  A  /\  B  = +oo )  ->  -.  B  = -oo )
6160a1i 11 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( 0  <  A  /\  B  = +oo )  ->  -.  B  = -oo ) )
6255, 61jaod 395 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( ( 0  < 
B  /\  A  = +oo )  \/  (
0  <  A  /\  B  = +oo )
)  ->  -.  B  = -oo ) )
6311adantl 482 . . . . . . . . 9  |-  ( ( B  <  0  /\  A  = -oo )  ->  -.  0  <  A
)
6463a1i 11 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( B  <  0  /\  A  = -oo )  ->  -.  0  <  A ) )
65 simpl 473 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  A  e.  RR* )
66 xrltnsym 11970 . . . . . . . . . 10  |-  ( ( A  e.  RR*  /\  0  e.  RR* )  ->  ( A  <  0  ->  -.  0  <  A ) )
6765, 7, 66sylancl 694 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A  <  0  ->  -.  0  <  A ) )
6867adantrd 484 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( A  <  0  /\  B  = -oo )  ->  -.  0  <  A ) )
6964, 68jaod 395 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( ( B  <  0  /\  A  = -oo )  \/  ( A  <  0  /\  B  = -oo ) )  ->  -.  0  <  A ) )
7062, 69orim12d 883 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( ( ( 0  <  B  /\  A  = +oo )  \/  (
0  <  A  /\  B  = +oo )
)  \/  ( ( B  <  0  /\  A  = -oo )  \/  ( A  <  0  /\  B  = -oo ) ) )  -> 
( -.  B  = -oo  \/  -.  0  <  A ) ) )
71 ianor 509 . . . . . . 7  |-  ( -.  ( 0  <  A  /\  B  = -oo ) 
<->  ( -.  0  < 
A  \/  -.  B  = -oo ) )
72 orcom 402 . . . . . . 7  |-  ( ( -.  0  <  A  \/  -.  B  = -oo ) 
<->  ( -.  B  = -oo  \/  -.  0  <  A ) )
7371, 72bitri 264 . . . . . 6  |-  ( -.  ( 0  <  A  /\  B  = -oo ) 
<->  ( -.  B  = -oo  \/  -.  0  <  A ) )
7470, 73syl6ibr 242 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( ( ( 0  <  B  /\  A  = +oo )  \/  (
0  <  A  /\  B  = +oo )
)  \/  ( ( B  <  0  /\  A  = -oo )  \/  ( A  <  0  /\  B  = -oo ) ) )  ->  -.  ( 0  <  A  /\  B  = -oo ) ) )
7542adantl 482 . . . . . . . . 9  |-  ( ( 0  <  B  /\  A  = +oo )  ->  -.  A  <  0
)
7675a1i 11 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( 0  <  B  /\  A  = +oo )  ->  -.  A  <  0 ) )
7767con2d 129 . . . . . . . . 9  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
0  <  A  ->  -.  A  <  0 ) )
7877adantrd 484 . . . . . . . 8  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( 0  <  A  /\  B  = +oo )  ->  -.  A  <  0 ) )
7976, 78jaod 395 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( ( 0  < 
B  /\  A  = +oo )  \/  (
0  <  A  /\  B  = +oo )
)  ->  -.  A  <  0 ) )
80 breq1 4656 . . . . . . . . . . . 12  |-  ( B  = +oo  ->  ( B  <  0  <-> +oo  <  0
) )
8133, 80mtbiri 317 . . . . . . . . . . 11  |-  ( B  = +oo  ->  -.  B  <  0 )
8281con2i 134 . . . . . . . . . 10  |-  ( B  <  0  ->  -.  B  = +oo )
8382adantr 481 . . . . . . . . 9  |-  ( ( B  <  0  /\  A  = -oo )  ->  -.  B  = +oo )
8459con2i 134 . . . . . . . . . 10  |-  ( B  = -oo  ->  -.  B  = +oo )
8584adantl 482 . . . . . . . . 9  |-  ( ( A  <  0  /\  B  = -oo )  ->  -.  B  = +oo )
8683, 85jaoi 394 . . . . . . . 8  |-  ( ( ( B  <  0  /\  A  = -oo )  \/  ( A  <  0  /\  B  = -oo ) )  ->  -.  B  = +oo )
8786a1i 11 . . . . . . 7  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( ( B  <  0  /\  A  = -oo )  \/  ( A  <  0  /\  B  = -oo ) )  ->  -.  B  = +oo ) )
8879, 87orim12d 883 . . . . . 6  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( ( ( 0  <  B  /\  A  = +oo )  \/  (
0  <  A  /\  B  = +oo )
)  \/  ( ( B  <  0  /\  A  = -oo )  \/  ( A  <  0  /\  B  = -oo ) ) )  -> 
( -.  A  <  0  \/  -.  B  = +oo ) ) )
89 ianor 509 . . . . . 6  |-  ( -.  ( A  <  0  /\  B  = +oo ) 
<->  ( -.  A  <  0  \/  -.  B  = +oo ) )
9088, 89syl6ibr 242 . . . . 5  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( ( ( 0  <  B  /\  A  = +oo )  \/  (
0  <  A  /\  B  = +oo )
)  \/  ( ( B  <  0  /\  A  = -oo )  \/  ( A  <  0  /\  B  = -oo ) ) )  ->  -.  ( A  <  0  /\  B  = +oo ) ) )
9174, 90jcad 555 . . . 4  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( ( ( 0  <  B  /\  A  = +oo )  \/  (
0  <  A  /\  B  = +oo )
)  \/  ( ( B  <  0  /\  A  = -oo )  \/  ( A  <  0  /\  B  = -oo ) ) )  -> 
( -.  ( 0  <  A  /\  B  = -oo )  /\  -.  ( A  <  0  /\  B  = +oo ) ) ) )
92 ioran 511 . . . 4  |-  ( -.  ( ( 0  < 
A  /\  B  = -oo )  \/  ( A  <  0  /\  B  = +oo ) )  <->  ( -.  ( 0  <  A  /\  B  = -oo )  /\  -.  ( A  <  0  /\  B  = +oo ) ) )
9391, 92syl6ibr 242 . . 3  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( ( ( 0  <  B  /\  A  = +oo )  \/  (
0  <  A  /\  B  = +oo )
)  \/  ( ( B  <  0  /\  A  = -oo )  \/  ( A  <  0  /\  B  = -oo ) ) )  ->  -.  ( ( 0  < 
A  /\  B  = -oo )  \/  ( A  <  0  /\  B  = +oo ) ) ) )
9452, 93jcad 555 . 2  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( ( ( 0  <  B  /\  A  = +oo )  \/  (
0  <  A  /\  B  = +oo )
)  \/  ( ( B  <  0  /\  A  = -oo )  \/  ( A  <  0  /\  B  = -oo ) ) )  -> 
( -.  ( ( 0  <  B  /\  A  = -oo )  \/  ( B  <  0  /\  A  = +oo ) )  /\  -.  ( ( 0  < 
A  /\  B  = -oo )  \/  ( A  <  0  /\  B  = +oo ) ) ) ) )
95 or4 550 . 2  |-  ( ( ( ( 0  < 
B  /\  A  = +oo )  \/  ( B  <  0  /\  A  = -oo ) )  \/  ( ( 0  < 
A  /\  B  = +oo )  \/  ( A  <  0  /\  B  = -oo ) ) )  <-> 
( ( ( 0  <  B  /\  A  = +oo )  \/  (
0  <  A  /\  B  = +oo )
)  \/  ( ( B  <  0  /\  A  = -oo )  \/  ( A  <  0  /\  B  = -oo ) ) ) )
96 ioran 511 . 2  |-  ( -.  ( ( ( 0  <  B  /\  A  = -oo )  \/  ( B  <  0  /\  A  = +oo ) )  \/  ( ( 0  < 
A  /\  B  = -oo )  \/  ( A  <  0  /\  B  = +oo ) ) )  <-> 
( -.  ( ( 0  <  B  /\  A  = -oo )  \/  ( B  <  0  /\  A  = +oo ) )  /\  -.  ( ( 0  < 
A  /\  B  = -oo )  \/  ( A  <  0  /\  B  = +oo ) ) ) )
9794, 95, 963imtr4g 285 1  |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  (
( ( ( 0  <  B  /\  A  = +oo )  \/  ( B  <  0  /\  A  = -oo ) )  \/  ( ( 0  < 
A  /\  B  = +oo )  \/  ( A  <  0  /\  B  = -oo ) ) )  ->  -.  ( (
( 0  <  B  /\  A  = -oo )  \/  ( B  <  0  /\  A  = +oo ) )  \/  ( ( 0  < 
A  /\  B  = -oo )  \/  ( A  <  0  /\  B  = +oo ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653   0cc0 9936   +oocpnf 10071   -oocmnf 10072   RR*cxr 10073    < clt 10074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-i2m1 10004  ax-1ne0 10005  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-po 5035  df-so 5036  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079
This theorem is referenced by:  xmulneg1  12099
  Copyright terms: Public domain W3C validator