MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  axpre-sup Structured version   Visualization version   GIF version

Theorem axpre-sup 9990
Description: A nonempty, bounded-above set of reals has a supremum. Axiom 22 of 22 for real and complex numbers, derived from ZF set theory. Note: The more general version with ordering on extended reals is axsup 10113. This construction-dependent theorem should not be referenced directly; instead, use ax-pre-sup 10014. (Contributed by NM, 19-May-1996.) (Revised by Mario Carneiro, 16-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
axpre-sup ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem axpre-sup
Dummy variables 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elreal2 9953 . . . . . . 7 (𝑥 ∈ ℝ ↔ ((1st𝑥) ∈ R𝑥 = ⟨(1st𝑥), 0R⟩))
21simplbi 476 . . . . . 6 (𝑥 ∈ ℝ → (1st𝑥) ∈ R)
32adantl 482 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ) → (1st𝑥) ∈ R)
4 fo1st 7188 . . . . . . . . . . . 12 1st :V–onto→V
5 fof 6115 . . . . . . . . . . . 12 (1st :V–onto→V → 1st :V⟶V)
6 ffn 6045 . . . . . . . . . . . 12 (1st :V⟶V → 1st Fn V)
74, 5, 6mp2b 10 . . . . . . . . . . 11 1st Fn V
8 ssv 3625 . . . . . . . . . . 11 𝐴 ⊆ V
9 fvelimab 6253 . . . . . . . . . . 11 ((1st Fn V ∧ 𝐴 ⊆ V) → (𝑤 ∈ (1st𝐴) ↔ ∃𝑦𝐴 (1st𝑦) = 𝑤))
107, 8, 9mp2an 708 . . . . . . . . . 10 (𝑤 ∈ (1st𝐴) ↔ ∃𝑦𝐴 (1st𝑦) = 𝑤)
11 r19.29 3072 . . . . . . . . . . . 12 ((∀𝑦𝐴 𝑦 < 𝑥 ∧ ∃𝑦𝐴 (1st𝑦) = 𝑤) → ∃𝑦𝐴 (𝑦 < 𝑥 ∧ (1st𝑦) = 𝑤))
12 ssel2 3598 . . . . . . . . . . . . . . . . 17 ((𝐴 ⊆ ℝ ∧ 𝑦𝐴) → 𝑦 ∈ ℝ)
13 ltresr2 9962 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑦 < 𝑥 ↔ (1st𝑦) <R (1st𝑥)))
14 breq1 4656 . . . . . . . . . . . . . . . . . . . 20 ((1st𝑦) = 𝑤 → ((1st𝑦) <R (1st𝑥) ↔ 𝑤 <R (1st𝑥)))
1513, 14sylan9bb 736 . . . . . . . . . . . . . . . . . . 19 (((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ (1st𝑦) = 𝑤) → (𝑦 < 𝑥𝑤 <R (1st𝑥)))
1615biimpd 219 . . . . . . . . . . . . . . . . . 18 (((𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ (1st𝑦) = 𝑤) → (𝑦 < 𝑥𝑤 <R (1st𝑥)))
1716exp31 630 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ → (𝑥 ∈ ℝ → ((1st𝑦) = 𝑤 → (𝑦 < 𝑥𝑤 <R (1st𝑥)))))
1812, 17syl 17 . . . . . . . . . . . . . . . 16 ((𝐴 ⊆ ℝ ∧ 𝑦𝐴) → (𝑥 ∈ ℝ → ((1st𝑦) = 𝑤 → (𝑦 < 𝑥𝑤 <R (1st𝑥)))))
1918imp4b 613 . . . . . . . . . . . . . . 15 (((𝐴 ⊆ ℝ ∧ 𝑦𝐴) ∧ 𝑥 ∈ ℝ) → (((1st𝑦) = 𝑤𝑦 < 𝑥) → 𝑤 <R (1st𝑥)))
2019ancomsd 470 . . . . . . . . . . . . . 14 (((𝐴 ⊆ ℝ ∧ 𝑦𝐴) ∧ 𝑥 ∈ ℝ) → ((𝑦 < 𝑥 ∧ (1st𝑦) = 𝑤) → 𝑤 <R (1st𝑥)))
2120an32s 846 . . . . . . . . . . . . 13 (((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) ∧ 𝑦𝐴) → ((𝑦 < 𝑥 ∧ (1st𝑦) = 𝑤) → 𝑤 <R (1st𝑥)))
2221rexlimdva 3031 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (∃𝑦𝐴 (𝑦 < 𝑥 ∧ (1st𝑦) = 𝑤) → 𝑤 <R (1st𝑥)))
2311, 22syl5 34 . . . . . . . . . . 11 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → ((∀𝑦𝐴 𝑦 < 𝑥 ∧ ∃𝑦𝐴 (1st𝑦) = 𝑤) → 𝑤 <R (1st𝑥)))
2423expd 452 . . . . . . . . . 10 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (∀𝑦𝐴 𝑦 < 𝑥 → (∃𝑦𝐴 (1st𝑦) = 𝑤𝑤 <R (1st𝑥))))
2510, 24syl7bi 245 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝑥 ∈ ℝ) → (∀𝑦𝐴 𝑦 < 𝑥 → (𝑤 ∈ (1st𝐴) → 𝑤 <R (1st𝑥))))
2625impr 649 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑥)) → (𝑤 ∈ (1st𝐴) → 𝑤 <R (1st𝑥)))
2726adantlr 751 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑥)) → (𝑤 ∈ (1st𝐴) → 𝑤 <R (1st𝑥)))
2827ralrimiv 2965 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦𝐴 𝑦 < 𝑥)) → ∀𝑤 ∈ (1st𝐴)𝑤 <R (1st𝑥))
2928expr 643 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ) → (∀𝑦𝐴 𝑦 < 𝑥 → ∀𝑤 ∈ (1st𝐴)𝑤 <R (1st𝑥)))
30 breq2 4657 . . . . . . 7 (𝑣 = (1st𝑥) → (𝑤 <R 𝑣𝑤 <R (1st𝑥)))
3130ralbidv 2986 . . . . . 6 (𝑣 = (1st𝑥) → (∀𝑤 ∈ (1st𝐴)𝑤 <R 𝑣 ↔ ∀𝑤 ∈ (1st𝐴)𝑤 <R (1st𝑥)))
3231rspcev 3309 . . . . 5 (((1st𝑥) ∈ R ∧ ∀𝑤 ∈ (1st𝐴)𝑤 <R (1st𝑥)) → ∃𝑣R𝑤 ∈ (1st𝐴)𝑤 <R 𝑣)
333, 29, 32syl6an 568 . . . 4 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑥 ∈ ℝ) → (∀𝑦𝐴 𝑦 < 𝑥 → ∃𝑣R𝑤 ∈ (1st𝐴)𝑤 <R 𝑣))
3433rexlimdva 3031 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 → ∃𝑣R𝑤 ∈ (1st𝐴)𝑤 <R 𝑣))
35 n0 3931 . . . . . 6 (𝐴 ≠ ∅ ↔ ∃𝑦 𝑦𝐴)
36 fnfvima 6496 . . . . . . . . 9 ((1st Fn V ∧ 𝐴 ⊆ V ∧ 𝑦𝐴) → (1st𝑦) ∈ (1st𝐴))
377, 8, 36mp3an12 1414 . . . . . . . 8 (𝑦𝐴 → (1st𝑦) ∈ (1st𝐴))
38 ne0i 3921 . . . . . . . 8 ((1st𝑦) ∈ (1st𝐴) → (1st𝐴) ≠ ∅)
3937, 38syl 17 . . . . . . 7 (𝑦𝐴 → (1st𝐴) ≠ ∅)
4039exlimiv 1858 . . . . . 6 (∃𝑦 𝑦𝐴 → (1st𝐴) ≠ ∅)
4135, 40sylbi 207 . . . . 5 (𝐴 ≠ ∅ → (1st𝐴) ≠ ∅)
42 supsr 9933 . . . . . 6 (((1st𝐴) ≠ ∅ ∧ ∃𝑣R𝑤 ∈ (1st𝐴)𝑤 <R 𝑣) → ∃𝑣R (∀𝑤 ∈ (1st𝐴) ¬ 𝑣 <R 𝑤 ∧ ∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢)))
4342ex 450 . . . . 5 ((1st𝐴) ≠ ∅ → (∃𝑣R𝑤 ∈ (1st𝐴)𝑤 <R 𝑣 → ∃𝑣R (∀𝑤 ∈ (1st𝐴) ¬ 𝑣 <R 𝑤 ∧ ∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢))))
4441, 43syl 17 . . . 4 (𝐴 ≠ ∅ → (∃𝑣R𝑤 ∈ (1st𝐴)𝑤 <R 𝑣 → ∃𝑣R (∀𝑤 ∈ (1st𝐴) ¬ 𝑣 <R 𝑤 ∧ ∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢))))
4544adantl 482 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (∃𝑣R𝑤 ∈ (1st𝐴)𝑤 <R 𝑣 → ∃𝑣R (∀𝑤 ∈ (1st𝐴) ¬ 𝑣 <R 𝑤 ∧ ∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢))))
46 breq2 4657 . . . . . . . . . . . 12 (𝑤 = (1st𝑦) → (𝑣 <R 𝑤𝑣 <R (1st𝑦)))
4746notbid 308 . . . . . . . . . . 11 (𝑤 = (1st𝑦) → (¬ 𝑣 <R 𝑤 ↔ ¬ 𝑣 <R (1st𝑦)))
4847rspccv 3306 . . . . . . . . . 10 (∀𝑤 ∈ (1st𝐴) ¬ 𝑣 <R 𝑤 → ((1st𝑦) ∈ (1st𝐴) → ¬ 𝑣 <R (1st𝑦)))
4937, 48syl5com 31 . . . . . . . . 9 (𝑦𝐴 → (∀𝑤 ∈ (1st𝐴) ¬ 𝑣 <R 𝑤 → ¬ 𝑣 <R (1st𝑦)))
5049adantl 482 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝑦𝐴) → (∀𝑤 ∈ (1st𝐴) ¬ 𝑣 <R 𝑤 → ¬ 𝑣 <R (1st𝑦)))
51 elreal2 9953 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ ↔ ((1st𝑦) ∈ R𝑦 = ⟨(1st𝑦), 0R⟩))
5251simprbi 480 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → 𝑦 = ⟨(1st𝑦), 0R⟩)
5352breq2d 4665 . . . . . . . . . . 11 (𝑦 ∈ ℝ → (⟨𝑣, 0R⟩ < 𝑦 ↔ ⟨𝑣, 0R⟩ < ⟨(1st𝑦), 0R⟩))
54 ltresr 9961 . . . . . . . . . . 11 (⟨𝑣, 0R⟩ < ⟨(1st𝑦), 0R⟩ ↔ 𝑣 <R (1st𝑦))
5553, 54syl6bb 276 . . . . . . . . . 10 (𝑦 ∈ ℝ → (⟨𝑣, 0R⟩ < 𝑦𝑣 <R (1st𝑦)))
5612, 55syl 17 . . . . . . . . 9 ((𝐴 ⊆ ℝ ∧ 𝑦𝐴) → (⟨𝑣, 0R⟩ < 𝑦𝑣 <R (1st𝑦)))
5756notbid 308 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝑦𝐴) → (¬ ⟨𝑣, 0R⟩ < 𝑦 ↔ ¬ 𝑣 <R (1st𝑦)))
5850, 57sylibrd 249 . . . . . . 7 ((𝐴 ⊆ ℝ ∧ 𝑦𝐴) → (∀𝑤 ∈ (1st𝐴) ¬ 𝑣 <R 𝑤 → ¬ ⟨𝑣, 0R⟩ < 𝑦))
5958ralrimdva 2969 . . . . . 6 (𝐴 ⊆ ℝ → (∀𝑤 ∈ (1st𝐴) ¬ 𝑣 <R 𝑤 → ∀𝑦𝐴 ¬ ⟨𝑣, 0R⟩ < 𝑦))
6059ad2antrr 762 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑣R) → (∀𝑤 ∈ (1st𝐴) ¬ 𝑣 <R 𝑤 → ∀𝑦𝐴 ¬ ⟨𝑣, 0R⟩ < 𝑦))
6152breq1d 4663 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ → (𝑦 <𝑣, 0R⟩ ↔ ⟨(1st𝑦), 0R⟩ <𝑣, 0R⟩))
62 ltresr 9961 . . . . . . . . . . . . . 14 (⟨(1st𝑦), 0R⟩ <𝑣, 0R⟩ ↔ (1st𝑦) <R 𝑣)
6361, 62syl6bb 276 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → (𝑦 <𝑣, 0R⟩ ↔ (1st𝑦) <R 𝑣))
6451simplbi 476 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ → (1st𝑦) ∈ R)
65 breq1 4656 . . . . . . . . . . . . . . . . 17 (𝑤 = (1st𝑦) → (𝑤 <R 𝑣 ↔ (1st𝑦) <R 𝑣))
66 breq1 4656 . . . . . . . . . . . . . . . . . 18 (𝑤 = (1st𝑦) → (𝑤 <R 𝑢 ↔ (1st𝑦) <R 𝑢))
6766rexbidv 3052 . . . . . . . . . . . . . . . . 17 (𝑤 = (1st𝑦) → (∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢 ↔ ∃𝑢 ∈ (1st𝐴)(1st𝑦) <R 𝑢))
6865, 67imbi12d 334 . . . . . . . . . . . . . . . 16 (𝑤 = (1st𝑦) → ((𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢) ↔ ((1st𝑦) <R 𝑣 → ∃𝑢 ∈ (1st𝐴)(1st𝑦) <R 𝑢)))
6968rspccv 3306 . . . . . . . . . . . . . . 15 (∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢) → ((1st𝑦) ∈ R → ((1st𝑦) <R 𝑣 → ∃𝑢 ∈ (1st𝐴)(1st𝑦) <R 𝑢)))
7064, 69syl5 34 . . . . . . . . . . . . . 14 (∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢) → (𝑦 ∈ ℝ → ((1st𝑦) <R 𝑣 → ∃𝑢 ∈ (1st𝐴)(1st𝑦) <R 𝑢)))
7170com3l 89 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ → ((1st𝑦) <R 𝑣 → (∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢) → ∃𝑢 ∈ (1st𝐴)(1st𝑦) <R 𝑢)))
7263, 71sylbid 230 . . . . . . . . . . . 12 (𝑦 ∈ ℝ → (𝑦 <𝑣, 0R⟩ → (∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢) → ∃𝑢 ∈ (1st𝐴)(1st𝑦) <R 𝑢)))
7372adantr 481 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → (𝑦 <𝑣, 0R⟩ → (∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢) → ∃𝑢 ∈ (1st𝐴)(1st𝑦) <R 𝑢)))
74 fvelimab 6253 . . . . . . . . . . . . . . . 16 ((1st Fn V ∧ 𝐴 ⊆ V) → (𝑢 ∈ (1st𝐴) ↔ ∃𝑧𝐴 (1st𝑧) = 𝑢))
757, 8, 74mp2an 708 . . . . . . . . . . . . . . 15 (𝑢 ∈ (1st𝐴) ↔ ∃𝑧𝐴 (1st𝑧) = 𝑢)
76 ssel2 3598 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ⊆ ℝ ∧ 𝑧𝐴) → 𝑧 ∈ ℝ)
77 ltresr2 9962 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑦 < 𝑧 ↔ (1st𝑦) <R (1st𝑧)))
7876, 77sylan2 491 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦 ∈ ℝ ∧ (𝐴 ⊆ ℝ ∧ 𝑧𝐴)) → (𝑦 < 𝑧 ↔ (1st𝑦) <R (1st𝑧)))
79 breq2 4657 . . . . . . . . . . . . . . . . . . . . 21 ((1st𝑧) = 𝑢 → ((1st𝑦) <R (1st𝑧) ↔ (1st𝑦) <R 𝑢))
8078, 79sylan9bb 736 . . . . . . . . . . . . . . . . . . . 20 (((𝑦 ∈ ℝ ∧ (𝐴 ⊆ ℝ ∧ 𝑧𝐴)) ∧ (1st𝑧) = 𝑢) → (𝑦 < 𝑧 ↔ (1st𝑦) <R 𝑢))
8180exbiri 652 . . . . . . . . . . . . . . . . . . 19 ((𝑦 ∈ ℝ ∧ (𝐴 ⊆ ℝ ∧ 𝑧𝐴)) → ((1st𝑧) = 𝑢 → ((1st𝑦) <R 𝑢𝑦 < 𝑧)))
8281expr 643 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → (𝑧𝐴 → ((1st𝑧) = 𝑢 → ((1st𝑦) <R 𝑢𝑦 < 𝑧))))
8382com4r 94 . . . . . . . . . . . . . . . . 17 ((1st𝑦) <R 𝑢 → ((𝑦 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → (𝑧𝐴 → ((1st𝑧) = 𝑢𝑦 < 𝑧))))
8483imp 445 . . . . . . . . . . . . . . . 16 (((1st𝑦) <R 𝑢 ∧ (𝑦 ∈ ℝ ∧ 𝐴 ⊆ ℝ)) → (𝑧𝐴 → ((1st𝑧) = 𝑢𝑦 < 𝑧)))
8584reximdvai 3015 . . . . . . . . . . . . . . 15 (((1st𝑦) <R 𝑢 ∧ (𝑦 ∈ ℝ ∧ 𝐴 ⊆ ℝ)) → (∃𝑧𝐴 (1st𝑧) = 𝑢 → ∃𝑧𝐴 𝑦 < 𝑧))
8675, 85syl5bi 232 . . . . . . . . . . . . . 14 (((1st𝑦) <R 𝑢 ∧ (𝑦 ∈ ℝ ∧ 𝐴 ⊆ ℝ)) → (𝑢 ∈ (1st𝐴) → ∃𝑧𝐴 𝑦 < 𝑧))
8786expcom 451 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → ((1st𝑦) <R 𝑢 → (𝑢 ∈ (1st𝐴) → ∃𝑧𝐴 𝑦 < 𝑧)))
8887com23 86 . . . . . . . . . . . 12 ((𝑦 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → (𝑢 ∈ (1st𝐴) → ((1st𝑦) <R 𝑢 → ∃𝑧𝐴 𝑦 < 𝑧)))
8988rexlimdv 3030 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → (∃𝑢 ∈ (1st𝐴)(1st𝑦) <R 𝑢 → ∃𝑧𝐴 𝑦 < 𝑧))
9073, 89syl6d 75 . . . . . . . . . 10 ((𝑦 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → (𝑦 <𝑣, 0R⟩ → (∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢) → ∃𝑧𝐴 𝑦 < 𝑧)))
9190com23 86 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 𝐴 ⊆ ℝ) → (∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢) → (𝑦 <𝑣, 0R⟩ → ∃𝑧𝐴 𝑦 < 𝑧)))
9291ex 450 . . . . . . . 8 (𝑦 ∈ ℝ → (𝐴 ⊆ ℝ → (∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢) → (𝑦 <𝑣, 0R⟩ → ∃𝑧𝐴 𝑦 < 𝑧))))
9392com3l 89 . . . . . . 7 (𝐴 ⊆ ℝ → (∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢) → (𝑦 ∈ ℝ → (𝑦 <𝑣, 0R⟩ → ∃𝑧𝐴 𝑦 < 𝑧))))
9493ad2antrr 762 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑣R) → (∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢) → (𝑦 ∈ ℝ → (𝑦 <𝑣, 0R⟩ → ∃𝑧𝐴 𝑦 < 𝑧))))
9594ralrimdv 2968 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑣R) → (∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢) → ∀𝑦 ∈ ℝ (𝑦 <𝑣, 0R⟩ → ∃𝑧𝐴 𝑦 < 𝑧)))
96 opelreal 9951 . . . . . . . 8 (⟨𝑣, 0R⟩ ∈ ℝ ↔ 𝑣R)
9796biimpri 218 . . . . . . 7 (𝑣R → ⟨𝑣, 0R⟩ ∈ ℝ)
9897adantl 482 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑣R) → ⟨𝑣, 0R⟩ ∈ ℝ)
99 breq1 4656 . . . . . . . . . . 11 (𝑥 = ⟨𝑣, 0R⟩ → (𝑥 < 𝑦 ↔ ⟨𝑣, 0R⟩ < 𝑦))
10099notbid 308 . . . . . . . . . 10 (𝑥 = ⟨𝑣, 0R⟩ → (¬ 𝑥 < 𝑦 ↔ ¬ ⟨𝑣, 0R⟩ < 𝑦))
101100ralbidv 2986 . . . . . . . . 9 (𝑥 = ⟨𝑣, 0R⟩ → (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ↔ ∀𝑦𝐴 ¬ ⟨𝑣, 0R⟩ < 𝑦))
102 breq2 4657 . . . . . . . . . . 11 (𝑥 = ⟨𝑣, 0R⟩ → (𝑦 < 𝑥𝑦 <𝑣, 0R⟩))
103102imbi1d 331 . . . . . . . . . 10 (𝑥 = ⟨𝑣, 0R⟩ → ((𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ (𝑦 <𝑣, 0R⟩ → ∃𝑧𝐴 𝑦 < 𝑧)))
104103ralbidv 2986 . . . . . . . . 9 (𝑥 = ⟨𝑣, 0R⟩ → (∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) ↔ ∀𝑦 ∈ ℝ (𝑦 <𝑣, 0R⟩ → ∃𝑧𝐴 𝑦 < 𝑧)))
105101, 104anbi12d 747 . . . . . . . 8 (𝑥 = ⟨𝑣, 0R⟩ → ((∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) ↔ (∀𝑦𝐴 ¬ ⟨𝑣, 0R⟩ < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <𝑣, 0R⟩ → ∃𝑧𝐴 𝑦 < 𝑧))))
106105rspcev 3309 . . . . . . 7 ((⟨𝑣, 0R⟩ ∈ ℝ ∧ (∀𝑦𝐴 ¬ ⟨𝑣, 0R⟩ < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <𝑣, 0R⟩ → ∃𝑧𝐴 𝑦 < 𝑧))) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
107106ex 450 . . . . . 6 (⟨𝑣, 0R⟩ ∈ ℝ → ((∀𝑦𝐴 ¬ ⟨𝑣, 0R⟩ < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <𝑣, 0R⟩ → ∃𝑧𝐴 𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
10898, 107syl 17 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑣R) → ((∀𝑦𝐴 ¬ ⟨𝑣, 0R⟩ < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 <𝑣, 0R⟩ → ∃𝑧𝐴 𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
10960, 95, 108syl2and 500 . . . 4 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) ∧ 𝑣R) → ((∀𝑤 ∈ (1st𝐴) ¬ 𝑣 <R 𝑤 ∧ ∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢)) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
110109rexlimdva 3031 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (∃𝑣R (∀𝑤 ∈ (1st𝐴) ¬ 𝑣 <R 𝑤 ∧ ∀𝑤R (𝑤 <R 𝑣 → ∃𝑢 ∈ (1st𝐴)𝑤 <R 𝑢)) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
11134, 45, 1103syld 60 . 2 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥 → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧))))
1121113impia 1261 1 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑦 < 𝑥) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  wne 2794  wral 2912  wrex 2913  Vcvv 3200  wss 3574  c0 3915  cop 4183   class class class wbr 4653  cima 5117   Fn wfn 5883  wf 5884  ontowfo 5886  cfv 5888  1st c1st 7166  Rcnr 9687  0Rc0r 9688   <R cltr 9693  cr 9935   < cltrr 9940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-ec 7744  df-qs 7748  df-ni 9694  df-pli 9695  df-mi 9696  df-lti 9697  df-plpq 9730  df-mpq 9731  df-ltpq 9732  df-enq 9733  df-nq 9734  df-erq 9735  df-plq 9736  df-mq 9737  df-1nq 9738  df-rq 9739  df-ltnq 9740  df-np 9803  df-1p 9804  df-plp 9805  df-mp 9806  df-ltp 9807  df-enr 9877  df-nr 9878  df-plr 9879  df-mr 9880  df-ltr 9881  df-0r 9882  df-1r 9883  df-m1r 9884  df-r 9946  df-lt 9949
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator