MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  supsr Structured version   Visualization version   GIF version

Theorem supsr 9933
Description: A nonempty, bounded set of signed reals has a supremum. (Contributed by NM, 21-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.)
Assertion
Ref Expression
supsr ((𝐴 ≠ ∅ ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥) → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem supsr
Dummy variables 𝑤 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 3931 . . 3 (𝐴 ≠ ∅ ↔ ∃𝑢 𝑢𝐴)
2 ltrelsr 9889 . . . . . . . . . . . . 13 <R ⊆ (R × R)
32brel 5168 . . . . . . . . . . . 12 (𝑦 <R 𝑥 → (𝑦R𝑥R))
43simpld 475 . . . . . . . . . . 11 (𝑦 <R 𝑥𝑦R)
54ralimi 2952 . . . . . . . . . 10 (∀𝑦𝐴 𝑦 <R 𝑥 → ∀𝑦𝐴 𝑦R)
6 dfss3 3592 . . . . . . . . . 10 (𝐴R ↔ ∀𝑦𝐴 𝑦R)
75, 6sylibr 224 . . . . . . . . 9 (∀𝑦𝐴 𝑦 <R 𝑥𝐴R)
87sseld 3602 . . . . . . . 8 (∀𝑦𝐴 𝑦 <R 𝑥 → (𝑢𝐴𝑢R))
98rexlimivw 3029 . . . . . . 7 (∃𝑥R𝑦𝐴 𝑦 <R 𝑥 → (𝑢𝐴𝑢R))
109impcom 446 . . . . . 6 ((𝑢𝐴 ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥) → 𝑢R)
11 eleq1 2689 . . . . . . . . 9 (𝑢 = if(𝑢R, 𝑢, 1R) → (𝑢𝐴 ↔ if(𝑢R, 𝑢, 1R) ∈ 𝐴))
1211anbi1d 741 . . . . . . . 8 (𝑢 = if(𝑢R, 𝑢, 1R) → ((𝑢𝐴 ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥) ↔ (if(𝑢R, 𝑢, 1R) ∈ 𝐴 ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥)))
1312imbi1d 331 . . . . . . 7 (𝑢 = if(𝑢R, 𝑢, 1R) → (((𝑢𝐴 ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥) → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧))) ↔ ((if(𝑢R, 𝑢, 1R) ∈ 𝐴 ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥) → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧)))))
14 opeq1 4402 . . . . . . . . . . . 12 (𝑣 = 𝑤 → ⟨𝑣, 1P⟩ = ⟨𝑤, 1P⟩)
1514eceq1d 7783 . . . . . . . . . . 11 (𝑣 = 𝑤 → [⟨𝑣, 1P⟩] ~R = [⟨𝑤, 1P⟩] ~R )
1615oveq2d 6666 . . . . . . . . . 10 (𝑣 = 𝑤 → (if(𝑢R, 𝑢, 1R) +R [⟨𝑣, 1P⟩] ~R ) = (if(𝑢R, 𝑢, 1R) +R [⟨𝑤, 1P⟩] ~R ))
1716eleq1d 2686 . . . . . . . . 9 (𝑣 = 𝑤 → ((if(𝑢R, 𝑢, 1R) +R [⟨𝑣, 1P⟩] ~R ) ∈ 𝐴 ↔ (if(𝑢R, 𝑢, 1R) +R [⟨𝑤, 1P⟩] ~R ) ∈ 𝐴))
1817cbvabv 2747 . . . . . . . 8 {𝑣 ∣ (if(𝑢R, 𝑢, 1R) +R [⟨𝑣, 1P⟩] ~R ) ∈ 𝐴} = {𝑤 ∣ (if(𝑢R, 𝑢, 1R) +R [⟨𝑤, 1P⟩] ~R ) ∈ 𝐴}
19 1sr 9902 . . . . . . . . 9 1RR
2019elimel 4150 . . . . . . . 8 if(𝑢R, 𝑢, 1R) ∈ R
2118, 20supsrlem 9932 . . . . . . 7 ((if(𝑢R, 𝑢, 1R) ∈ 𝐴 ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥) → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧)))
2213, 21dedth 4139 . . . . . 6 (𝑢R → ((𝑢𝐴 ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥) → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧))))
2310, 22mpcom 38 . . . . 5 ((𝑢𝐴 ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥) → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧)))
2423ex 450 . . . 4 (𝑢𝐴 → (∃𝑥R𝑦𝐴 𝑦 <R 𝑥 → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧))))
2524exlimiv 1858 . . 3 (∃𝑢 𝑢𝐴 → (∃𝑥R𝑦𝐴 𝑦 <R 𝑥 → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧))))
261, 25sylbi 207 . 2 (𝐴 ≠ ∅ → (∃𝑥R𝑦𝐴 𝑦 <R 𝑥 → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧))))
2726imp 445 1 ((𝐴 ≠ ∅ ∧ ∃𝑥R𝑦𝐴 𝑦 <R 𝑥) → ∃𝑥R (∀𝑦𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦R (𝑦 <R 𝑥 → ∃𝑧𝐴 𝑦 <R 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1483  wex 1704  wcel 1990  {cab 2608  wne 2794  wral 2912  wrex 2913  wss 3574  c0 3915  ifcif 4086  cop 4183   class class class wbr 4653  (class class class)co 6650  [cec 7740  1Pc1p 9682   ~R cer 9686  Rcnr 9687  1Rc1r 9689   +R cplr 9691   <R cltr 9693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-omul 7565  df-er 7742  df-ec 7744  df-qs 7748  df-ni 9694  df-pli 9695  df-mi 9696  df-lti 9697  df-plpq 9730  df-mpq 9731  df-ltpq 9732  df-enq 9733  df-nq 9734  df-erq 9735  df-plq 9736  df-mq 9737  df-1nq 9738  df-rq 9739  df-ltnq 9740  df-np 9803  df-1p 9804  df-plp 9805  df-mp 9806  df-ltp 9807  df-enr 9877  df-nr 9878  df-plr 9879  df-mr 9880  df-ltr 9881  df-0r 9882  df-1r 9883  df-m1r 9884
This theorem is referenced by:  axpre-sup  9990
  Copyright terms: Public domain W3C validator