Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bdayfo Structured version   Visualization version   Unicode version

Theorem bdayfo 31828
Description: The birthday function maps the surreals onto the ordinals. Alling's axiom (B). (Shortened proof on 2012-Apr-14, SF). (Contributed by Scott Fenton, 11-Jun-2011.)
Assertion
Ref Expression
bdayfo  |-  bday : No -onto-> On

Proof of Theorem bdayfo
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmexg 7097 . . . 4  |-  ( x  e.  No  ->  dom  x  e.  _V )
21rgen 2922 . . 3  |-  A. x  e.  No  dom  x  e. 
_V
3 df-bday 31798 . . . 4  |-  bday  =  ( x  e.  No  |->  dom  x )
43mptfng 6019 . . 3  |-  ( A. x  e.  No  dom  x  e.  _V  <->  bday  Fn  No )
52, 4mpbi 220 . 2  |-  bday  Fn  No
63rnmpt 5371 . . 3  |-  ran  bday  =  { y  |  E. x  e.  No  y  =  dom  x }
7 noxp1o 31816 . . . . . 6  |-  ( y  e.  On  ->  (
y  X.  { 1o } )  e.  No )
8 1on 7567 . . . . . . . . . 10  |-  1o  e.  On
98elexi 3213 . . . . . . . . 9  |-  1o  e.  _V
109snnz 4309 . . . . . . . 8  |-  { 1o }  =/=  (/)
11 dmxp 5344 . . . . . . . 8  |-  ( { 1o }  =/=  (/)  ->  dom  ( y  X.  { 1o } )  =  y )
1210, 11ax-mp 5 . . . . . . 7  |-  dom  (
y  X.  { 1o } )  =  y
1312eqcomi 2631 . . . . . 6  |-  y  =  dom  ( y  X. 
{ 1o } )
14 dmeq 5324 . . . . . . . 8  |-  ( x  =  ( y  X. 
{ 1o } )  ->  dom  x  =  dom  ( y  X.  { 1o } ) )
1514eqeq2d 2632 . . . . . . 7  |-  ( x  =  ( y  X. 
{ 1o } )  ->  ( y  =  dom  x  <->  y  =  dom  ( y  X.  { 1o } ) ) )
1615rspcev 3309 . . . . . 6  |-  ( ( ( y  X.  { 1o } )  e.  No  /\  y  =  dom  (
y  X.  { 1o } ) )  ->  E. x  e.  No  y  =  dom  x )
177, 13, 16sylancl 694 . . . . 5  |-  ( y  e.  On  ->  E. x  e.  No  y  =  dom  x )
18 nodmon 31803 . . . . . . 7  |-  ( x  e.  No  ->  dom  x  e.  On )
19 eleq1a 2696 . . . . . . 7  |-  ( dom  x  e.  On  ->  ( y  =  dom  x  ->  y  e.  On ) )
2018, 19syl 17 . . . . . 6  |-  ( x  e.  No  ->  (
y  =  dom  x  ->  y  e.  On ) )
2120rexlimiv 3027 . . . . 5  |-  ( E. x  e.  No  y  =  dom  x  ->  y  e.  On )
2217, 21impbii 199 . . . 4  |-  ( y  e.  On  <->  E. x  e.  No  y  =  dom  x )
2322abbi2i 2738 . . 3  |-  On  =  { y  |  E. x  e.  No  y  =  dom  x }
246, 23eqtr4i 2647 . 2  |-  ran  bday  =  On
25 df-fo 5894 . 2  |-  ( bday
: No -onto-> On  <->  ( bday  Fn  No  /\  ran  bday  =  On ) )
265, 24, 25mpbir2an 955 1  |-  bday : No -onto-> On
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   {cab 2608    =/= wne 2794   A.wral 2912   E.wrex 2913   _Vcvv 3200   (/)c0 3915   {csn 4177    X. cxp 5112   dom cdm 5114   ran crn 5115   Oncon0 5723    Fn wfn 5883   -onto->wfo 5886   1oc1o 7553   Nocsur 31793   bdaycbday 31795
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-1o 7560  df-no 31796  df-bday 31798
This theorem is referenced by:  nodense  31842  bdayimaon  31843  nosupno  31849  nosupbday  31851  noetalem3  31865  noetalem4  31866  bdayfun  31888  bdayfn  31889  bdaydm  31890  bdayrn  31891  bdayelon  31892  noprc  31895
  Copyright terms: Public domain W3C validator