Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj1098 Structured version   Visualization version   Unicode version

Theorem bnj1098 30854
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj1098.1  |-  D  =  ( om  \  { (/)
} )
Assertion
Ref Expression
bnj1098  |-  E. j
( ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D
)  ->  ( j  e.  n  /\  i  =  suc  j ) )
Distinct variable groups:    D, j    i, j    j, n
Allowed substitution hints:    D( i, n)

Proof of Theorem bnj1098
StepHypRef Expression
1 3anrev 1049 . . . . . . 7  |-  ( ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D )  <->  ( n  e.  D  /\  i  e.  n  /\  i  =/=  (/) ) )
2 df-3an 1039 . . . . . . 7  |-  ( ( n  e.  D  /\  i  e.  n  /\  i  =/=  (/) )  <->  ( (
n  e.  D  /\  i  e.  n )  /\  i  =/=  (/) ) )
31, 2bitri 264 . . . . . 6  |-  ( ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D )  <->  ( (
n  e.  D  /\  i  e.  n )  /\  i  =/=  (/) ) )
4 simpr 477 . . . . . . . 8  |-  ( ( n  e.  D  /\  i  e.  n )  ->  i  e.  n )
5 bnj1098.1 . . . . . . . . . 10  |-  D  =  ( om  \  { (/)
} )
65bnj923 30838 . . . . . . . . 9  |-  ( n  e.  D  ->  n  e.  om )
76adantr 481 . . . . . . . 8  |-  ( ( n  e.  D  /\  i  e.  n )  ->  n  e.  om )
8 elnn 7075 . . . . . . . 8  |-  ( ( i  e.  n  /\  n  e.  om )  ->  i  e.  om )
94, 7, 8syl2anc 693 . . . . . . 7  |-  ( ( n  e.  D  /\  i  e.  n )  ->  i  e.  om )
109anim1i 592 . . . . . 6  |-  ( ( ( n  e.  D  /\  i  e.  n
)  /\  i  =/=  (/) )  ->  ( i  e.  om  /\  i  =/=  (/) ) )
113, 10sylbi 207 . . . . 5  |-  ( ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D )  ->  (
i  e.  om  /\  i  =/=  (/) ) )
12 nnsuc 7082 . . . . 5  |-  ( ( i  e.  om  /\  i  =/=  (/) )  ->  E. j  e.  om  i  =  suc  j )
1311, 12syl 17 . . . 4  |-  ( ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D )  ->  E. j  e.  om  i  =  suc  j )
14 df-rex 2918 . . . . . 6  |-  ( E. j  e.  om  i  =  suc  j  <->  E. j
( j  e.  om  /\  i  =  suc  j
) )
1514imbi2i 326 . . . . 5  |-  ( ( ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D )  ->  E. j  e.  om  i  =  suc  j )  <->  ( (
i  =/=  (/)  /\  i  e.  n  /\  n  e.  D )  ->  E. j
( j  e.  om  /\  i  =  suc  j
) ) )
16 19.37v 1910 . . . . 5  |-  ( E. j ( ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D )  ->  (
j  e.  om  /\  i  =  suc  j ) )  <->  ( ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D )  ->  E. j
( j  e.  om  /\  i  =  suc  j
) ) )
1715, 16bitr4i 267 . . . 4  |-  ( ( ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D )  ->  E. j  e.  om  i  =  suc  j )  <->  E. j
( ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D
)  ->  ( j  e.  om  /\  i  =  suc  j ) ) )
1813, 17mpbi 220 . . 3  |-  E. j
( ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D
)  ->  ( j  e.  om  /\  i  =  suc  j ) )
19 ancr 572 . . 3  |-  ( ( ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D )  ->  (
j  e.  om  /\  i  =  suc  j ) )  ->  ( (
i  =/=  (/)  /\  i  e.  n  /\  n  e.  D )  ->  (
( j  e.  om  /\  i  =  suc  j
)  /\  ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D ) ) ) )
2018, 19bnj101 30789 . 2  |-  E. j
( ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D
)  ->  ( (
j  e.  om  /\  i  =  suc  j )  /\  ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D
) ) )
21 vex 3203 . . . . . 6  |-  j  e. 
_V
2221bnj216 30800 . . . . 5  |-  ( i  =  suc  j  -> 
j  e.  i )
2322ad2antlr 763 . . . 4  |-  ( ( ( j  e.  om  /\  i  =  suc  j
)  /\  ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D ) )  -> 
j  e.  i )
24 simpr2 1068 . . . 4  |-  ( ( ( j  e.  om  /\  i  =  suc  j
)  /\  ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D ) )  -> 
i  e.  n )
25 3simpc 1060 . . . . . . 7  |-  ( ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D )  ->  (
i  e.  n  /\  n  e.  D )
)
2625ancomd 467 . . . . . 6  |-  ( ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D )  ->  (
n  e.  D  /\  i  e.  n )
)
2726adantl 482 . . . . 5  |-  ( ( ( j  e.  om  /\  i  =  suc  j
)  /\  ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D ) )  -> 
( n  e.  D  /\  i  e.  n
) )
28 nnord 7073 . . . . 5  |-  ( n  e.  om  ->  Ord  n )
29 ordtr1 5767 . . . . 5  |-  ( Ord  n  ->  ( (
j  e.  i  /\  i  e.  n )  ->  j  e.  n ) )
3027, 7, 28, 294syl 19 . . . 4  |-  ( ( ( j  e.  om  /\  i  =  suc  j
)  /\  ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D ) )  -> 
( ( j  e.  i  /\  i  e.  n )  ->  j  e.  n ) )
3123, 24, 30mp2and 715 . . 3  |-  ( ( ( j  e.  om  /\  i  =  suc  j
)  /\  ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D ) )  -> 
j  e.  n )
32 simplr 792 . . 3  |-  ( ( ( j  e.  om  /\  i  =  suc  j
)  /\  ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D ) )  -> 
i  =  suc  j
)
3331, 32jca 554 . 2  |-  ( ( ( j  e.  om  /\  i  =  suc  j
)  /\  ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D ) )  -> 
( j  e.  n  /\  i  =  suc  j ) )
3420, 33bnj1023 30851 1  |-  E. j
( ( i  =/=  (/)  /\  i  e.  n  /\  n  e.  D
)  ->  ( j  e.  n  /\  i  =  suc  j ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   E.wrex 2913    \ cdif 3571   (/)c0 3915   {csn 4177   Ord word 5722   suc csuc 5725   omcom 7065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-tr 4753  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-om 7066
This theorem is referenced by:  bnj1110  31050  bnj1128  31058  bnj1145  31061
  Copyright terms: Public domain W3C validator